The forbidden pitch "dip" in the critical dimension (CD) through the pitch curve is a well-known optical proximity effect. The CD and CD process window near the "dip",usually found near a pitch range of 1.1 to 1...The forbidden pitch "dip" in the critical dimension (CD) through the pitch curve is a well-known optical proximity effect. The CD and CD process window near the "dip",usually found near a pitch range of 1.1 to 1.4 wavelength/ NA (numerical aperture),is smaller when compared with other pitches. This is caused by inadequate imaging contrast for an unequal line and space grating. Although this effect is relatively well-known, its relationship with typical process condition parameters,such as the effective image blur caused by the photo-acid diffusion during the post exposure bake or the aberration in the imaging lens, has not been systematically studied. In this paper, we will examine the correlation between the image blur and the effect on the CD, including the decrease in the CD value (the depth of the "dip") and the CD process window. We find that both the decrease in the CD value and the focus latitude near the forbidden pitch correlate very well with the effective Gaussian image blur. Longer effective diffusion length correlates well with a smaller process window and a deeper CD "dip". We conclude that the dip depth is very sensitive to the change in image contrast.展开更多
The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber have been studied by using the models of the equivalent twin waveguide soliton coupling,effective refractive...The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber have been studied by using the models of the equivalent twin waveguide soliton coupling,effective refractive index,effective normalized frequency and dispersion management solitons.It is shown that the dispersion in the cladding waveguide of the total internal reflective photonic crystal fiber is a positive dispersion,and the dispersion of its core waveguide is a negative dispersion.The method of the compensated probing laser diffraction by the phase hole induced by the stationary pumping laser in the cladding waveguide enables the average dispersion value of the total internal reflective photonic crystal fiber to be close to zero and the zero dispersion point to shift to the short wavelength region.展开更多
Clusters of water molecules have low ionization energies because of stabilization of charge from the dipole moment of surrounding molecules,and thus can form potential traps resulting in the undesirable photovoltaic p...Clusters of water molecules have low ionization energies because of stabilization of charge from the dipole moment of surrounding molecules,and thus can form potential traps resulting in the undesirable photovoltaic performance in organic solar cells(OSCs).Herein,we demonstrated a solvent-water evaporation(SWE)strategy,which can effectively remove the water-induced traps that are omnipresent in photoactive layers,leading to a significant improvement in device performance.A higher power conversion efficiency of 17.10%and a better device photostability are achieved by using this SWE method,as compared with the untreated binary PM6:Y6 system(15.83%).We highlight the water-related traps as a limiting factor for carrier transport and extraction properties,and further reveal the good universality of the SWE strategy applied into OSCs.In addition,organic light-emitting diodes and organic field-effect transistors are investigated to demonstrate the applicability of this SWE approach.This strategy presents a major step forward for advancing the field of organic electronics.展开更多
文摘The forbidden pitch "dip" in the critical dimension (CD) through the pitch curve is a well-known optical proximity effect. The CD and CD process window near the "dip",usually found near a pitch range of 1.1 to 1.4 wavelength/ NA (numerical aperture),is smaller when compared with other pitches. This is caused by inadequate imaging contrast for an unequal line and space grating. Although this effect is relatively well-known, its relationship with typical process condition parameters,such as the effective image blur caused by the photo-acid diffusion during the post exposure bake or the aberration in the imaging lens, has not been systematically studied. In this paper, we will examine the correlation between the image blur and the effect on the CD, including the decrease in the CD value (the depth of the "dip") and the CD process window. We find that both the decrease in the CD value and the focus latitude near the forbidden pitch correlate very well with the effective Gaussian image blur. Longer effective diffusion length correlates well with a smaller process window and a deeper CD "dip". We conclude that the dip depth is very sensitive to the change in image contrast.
文摘The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber have been studied by using the models of the equivalent twin waveguide soliton coupling,effective refractive index,effective normalized frequency and dispersion management solitons.It is shown that the dispersion in the cladding waveguide of the total internal reflective photonic crystal fiber is a positive dispersion,and the dispersion of its core waveguide is a negative dispersion.The method of the compensated probing laser diffraction by the phase hole induced by the stationary pumping laser in the cladding waveguide enables the average dispersion value of the total internal reflective photonic crystal fiber to be close to zero and the zero dispersion point to shift to the short wavelength region.
基金the National Natural Science Foundation of China(NSFC)(51773157 and 52061135206)the Fundamental Research Funds for the Central UniversitiesThe authors also thank the support of the opening project of Key Laboratory of Materials Processing and Mold and Beijing National Laboratory for Molecular Sciences(BNLMS201905).
文摘Clusters of water molecules have low ionization energies because of stabilization of charge from the dipole moment of surrounding molecules,and thus can form potential traps resulting in the undesirable photovoltaic performance in organic solar cells(OSCs).Herein,we demonstrated a solvent-water evaporation(SWE)strategy,which can effectively remove the water-induced traps that are omnipresent in photoactive layers,leading to a significant improvement in device performance.A higher power conversion efficiency of 17.10%and a better device photostability are achieved by using this SWE method,as compared with the untreated binary PM6:Y6 system(15.83%).We highlight the water-related traps as a limiting factor for carrier transport and extraction properties,and further reveal the good universality of the SWE strategy applied into OSCs.In addition,organic light-emitting diodes and organic field-effect transistors are investigated to demonstrate the applicability of this SWE approach.This strategy presents a major step forward for advancing the field of organic electronics.