The effect of finite number and dimensionality has been discussed in thispaper. The finite number effect has a negative correction to final temperature for 2D or 3D atomicFermi gases. The changing of final temperature...The effect of finite number and dimensionality has been discussed in thispaper. The finite number effect has a negative correction to final temperature for 2D or 3D atomicFermi gases. The changing of final temperature obtained by scanning from BEC region to BCS regionare 10% or so with N ≤ 10~3 and can be negligible when N 】 10~3. However, in ID atomic Fermi gas,the effect gives a positive correction which greatly changes the final temperature in Fermi gas.This behavior is completely opposed to the 2D and 3D cases and a proper explanation is still to befound. Dimensionality also has a positive correction, in which the more tightly trapping, the higherfinal temperature one gets with the same particle number. A discussion is also presented.展开更多
文摘The effect of finite number and dimensionality has been discussed in thispaper. The finite number effect has a negative correction to final temperature for 2D or 3D atomicFermi gases. The changing of final temperature obtained by scanning from BEC region to BCS regionare 10% or so with N ≤ 10~3 and can be negligible when N 】 10~3. However, in ID atomic Fermi gas,the effect gives a positive correction which greatly changes the final temperature in Fermi gas.This behavior is completely opposed to the 2D and 3D cases and a proper explanation is still to befound. Dimensionality also has a positive correction, in which the more tightly trapping, the higherfinal temperature one gets with the same particle number. A discussion is also presented.