期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
高孔隙率多孔介质材料有效复合模量的预估
1
作者 梁小燕 兑关锁 黄海明 《科学技术与工程》 2005年第10期665-667,共3页
利用分割孔隙的方法,取一半孔隙作为夹杂,另一半和原基体作为新基体,首先利用Mori-Tanaka法求得新基体的有效模量,然后类似地对新基体和另一半孔隙,利用相同的方法求得多孔介质的有效复合模量。通过实例计算表明,即使当孔隙率较大时,现... 利用分割孔隙的方法,取一半孔隙作为夹杂,另一半和原基体作为新基体,首先利用Mori-Tanaka法求得新基体的有效模量,然后类似地对新基体和另一半孔隙,利用相同的方法求得多孔介质的有效复合模量。通过实例计算表明,即使当孔隙率较大时,现方法与试验数据也相当吻合。 展开更多
关键词 多孔介质材料 有效复合模量 Mori—Tanaka法
下载PDF
形状记忆合金力学特性的细观力学分析 被引量:3
2
作者 王足 朱玉萍 +1 位作者 兑关锁 崔海宁 《北京交通大学学报》 EI CAS CSCD 北大核心 2008年第1期119-122,126,共5页
在形状记忆合金的本构模型中,有效复合模量是很重要的因素.工程计算中,一般采用经验公式,但缺乏深入的理论分析和实验数据支持.本文基于Eshelby等效夹杂原理和Mori-Tanaka方法,分析形状记忆合金的有效复合模量,推导了相应的计算公式,与... 在形状记忆合金的本构模型中,有效复合模量是很重要的因素.工程计算中,一般采用经验公式,但缺乏深入的理论分析和实验数据支持.本文基于Eshelby等效夹杂原理和Mori-Tanaka方法,分析形状记忆合金的有效复合模量,推导了相应的计算公式,与文献中的经验公式比较,进行误差分析,并分析了不同的有效复合模量计算对形状记忆合金的应力-应变曲线的影响,从理论上论证经验公式的可行性,为形状记忆合金的设计和使用提供理论依据. 展开更多
关键词 形状记忆合金 有效复合模量 本构模型 细观力学
下载PDF
Dynamic effective elastic modulus of polymer matrix composites with dense piezoelectric nano-fibers considering surface/interface effect 被引量:1
3
作者 FANG XueQian HUANG MingJuan +2 位作者 ZHU ZiTao LIU JinXi FENG WenJie 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第1期125-132,共8页
Based on effective field method,the dynamic effective elastic modulus of polymer matrix composites embedded with dense piezoelectric nano-fibers is obtained,and the interacting effect of piezoelectric surfaces/interfa... Based on effective field method,the dynamic effective elastic modulus of polymer matrix composites embedded with dense piezoelectric nano-fibers is obtained,and the interacting effect of piezoelectric surfaces/interfaces around the nano-fibers is considered.The multiple scattering effects of harmonic anti-plane shear waves between the piezoelectric nano-fibers with surface/interface are averaged by effective field method.To analyze the interacting results among the random nano-fibers,the problem of two typical piezoelectric nano-fibers is introduced by employing the addition theorem of Bessel functions.Through numerical calculations,the influence of the distance between the randomly distributed piezoelectric nano-fibers under different surface/interface parameters is analyzed.The effect of piezoelectric property of surface/interface on the effective shear modulus under different volume fractions is also examined.Comparison with the simplified cases is given to validate this dynamic electro-elastic model. 展开更多
关键词 piezoelectric nanocomposites dense nano-fibers dynamic effective properties effective field method
原文传递
Variational bounds of the effective moduli of piezoelectric composites
4
作者 WAN YongPing XIE LongTao ZHONG Zheng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第11期2106-2113,共8页
The classical Hashin-Shtrikman variational principle was re-generalized to the heterogeneous piezoelectric materials.The auxiliary problem is very much simplified by selecting the reference medium as a linearly isotro... The classical Hashin-Shtrikman variational principle was re-generalized to the heterogeneous piezoelectric materials.The auxiliary problem is very much simplified by selecting the reference medium as a linearly isotropic elastic medium.The electromechanical fields in the inhomogeneous piezoelectrics are simulated by introducing into the homogeneous reference medium certain eigenstresses and eigen electric fields.A closed-form solution can be obtained for the disturbance fields,which is convenient for the manipulation of the energy functional.As an application,a two-phase piezoelectric composite with nonpiezoelectric matrix is considered.Expressions of upper and lower bounds for the overall electromechanical moduli of the composite can be developed.These bounds are shown better than the Voigt-Reuss type ones. 展开更多
关键词 variational bound piezoelectric composite effective modulus
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部