本文利用神经网络的技术手段,针对Sentinel-1A二级波模式数据提出一种用于海浪有效波高(Hs)反演的模型--N_N模型。该模型在基于ERS2 SAR波模数据开发的双参数模型的基础上,加入经度、纬度、方位向截断波长(λ_c)、图像偏斜(skewness,sk...本文利用神经网络的技术手段,针对Sentinel-1A二级波模式数据提出一种用于海浪有效波高(Hs)反演的模型--N_N模型。该模型在基于ERS2 SAR波模数据开发的双参数模型的基础上,加入经度、纬度、方位向截断波长(λ_c)、图像偏斜(skewness,skew)、图像峰度(kurtosis,kurt)、卫星平台距目标物的距离与卫星飞行速度之比(β)等其他参数信息,根据不同输入参数的组合,建立了14个模型用于Hs反演,旨在分析各参数对有效波高反演的影响。通过分析表明,14个N_N模型相关系数都在0.8以上。随着λ_c、β参数的加入,N_N模型性能均大幅上升,且λ_c参数对模型性能的改善作用更加明显,相关系数提升0.06左右,均方根误差(Root Mean Squared Error,RMSE)下降0.12m左右。另外,skew与kurt的加入也使N_N模型性能有所改善,RMSE下降0.03m左右,相关系数提升0.01左右。其中,N_N10模型效果最佳且性能最稳定,与欧洲中程天气预测中心(the European Centre for Medium-Range Weather Forecasts,ECMWF)数据对比,相关系数(CORR)达到0.905,散射指数(Scattering Index,SI)与RMSE最低,分别为18.74%、0.502m,与独立测量的浮标数据的相关系数达到了0.894。展开更多
文摘本文利用神经网络的技术手段,针对Sentinel-1A二级波模式数据提出一种用于海浪有效波高(Hs)反演的模型--N_N模型。该模型在基于ERS2 SAR波模数据开发的双参数模型的基础上,加入经度、纬度、方位向截断波长(λ_c)、图像偏斜(skewness,skew)、图像峰度(kurtosis,kurt)、卫星平台距目标物的距离与卫星飞行速度之比(β)等其他参数信息,根据不同输入参数的组合,建立了14个模型用于Hs反演,旨在分析各参数对有效波高反演的影响。通过分析表明,14个N_N模型相关系数都在0.8以上。随着λ_c、β参数的加入,N_N模型性能均大幅上升,且λ_c参数对模型性能的改善作用更加明显,相关系数提升0.06左右,均方根误差(Root Mean Squared Error,RMSE)下降0.12m左右。另外,skew与kurt的加入也使N_N模型性能有所改善,RMSE下降0.03m左右,相关系数提升0.01左右。其中,N_N10模型效果最佳且性能最稳定,与欧洲中程天气预测中心(the European Centre for Medium-Range Weather Forecasts,ECMWF)数据对比,相关系数(CORR)达到0.905,散射指数(Scattering Index,SI)与RMSE最低,分别为18.74%、0.502m,与独立测量的浮标数据的相关系数达到了0.894。