AIM: Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD), and progresses to the end stage of liver disease. Biochemical markers of liver fibrosis are strongly associated wi...AIM: Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD), and progresses to the end stage of liver disease. Biochemical markers of liver fibrosis are strongly associated with the degree of histological liver fibrosis in patients with chronic liver disease. However, data are few on the usefulness of markers in NAFLD patients. The aim of this study was to identify better noninvasive predictors of hepatic fibrosis, with special focus on markers of liver fibrosis, type VI collagen 7S domain and hyaluronic acid. METHODS: One hundred and twelve patients with histologically proven NAFLD were studied. RESULTS: The histological stage of NAFLD correlated with several clinical and biochemical variables, the extent of hepatic fibrosis and the markers of liver fibrosis were relatively strong associated. The best cutoff values to detect NASH were assessed by using receiver operating characteristic analysis: type VI collagen 75 domain ≥5.0 ng/mL, hyaluronic acid ≥43 ng/mL. Both markers had a high positive predictive value: type VI collagen 7S domain, 86% and hyaluronic acid, 92%. Diagnostic accuracies of these markers were evaluated to detect severe fibrosis. Both markers showed high negative predictive values: type VI collagen 7S domain (≥5.0 ng/mL), 84% and hyaluronic acid (≥50 ng/mL), 78%, and were significantly and independently associated with the presence of NASH or severe fibrosis by logistic regression analysis. CONCLUSION: Both markers of liver fibrosis are useful in discriminating NASH from fatty liver alone or patients with severe fibrosis from patients with non-severe fibrosis.展开更多
The effects of 4 passivators, zeolite, lime, red mud and peanut shell biochar, on the fixation of Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils were studied by passivator culture experiment in order to sc...The effects of 4 passivators, zeolite, lime, red mud and peanut shell biochar, on the fixation of Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils were studied by passivator culture experiment in order to screen out the passivator with better fixation effects. The results showed that the soil pH values of zeolite, lime, red mud and peanut shell biochar increased significantly by 0.511.02, 0.821.29, 0.720.89 and 0.300.35 respectively. The effects of 4 passivators on the fixation of Cd and Zn in soil are lime>red mud>zeolite>peanut shell biochar. The order of effects on the fixation of Pb is red mud>lime>zeolite>peanut shell biochar. The order of the fixation effects of Cu is red mud>lime>peanut shell carbon>zeolite. The contents of Cd, Pb, Cu and Zn in the extractable state of CaCl2 decreased with the increase in the dosage of 4 passivators. Lime and red mud showed good fixation effects on Cd, Pb, Cu and Zn. The contents of Cd, Pb, Cu and Zn in the extractable state of CaCl2 at the low dosage(2.5 g/kg) of lime and red mud decreased by 41%, 84%, 76% and 83% respectively. Soil pH value was negatively correlated with CaCl2-Cd, Pb, Cu and Zn(P<0.01). Lime and red mud had significant fixation effects on Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils at low application dosages.展开更多
Saffron is the most precious and expensive agricultural product. A dehydration treatment is necessary to convert Crocus sativus L. stigmas into saffron spice. To the best of our knowledge, no information on mass trans...Saffron is the most precious and expensive agricultural product. A dehydration treatment is necessary to convert Crocus sativus L. stigmas into saffron spice. To the best of our knowledge, no information on mass transfer parameters of saffron stigmas is available in the literature. This study aimed at investigating the moisture transfer parameters and quality attributes of saffron stigmas under infrared treatment at different temperatures(60,70, …, 110 ℃). It was observed that the dehydration process of the samples occurred in a short accelerating rate period at the start followed by a falling rate period. The effective moisture diffusivity and convective mass transfer coefficient were determined by using the Dincer and Dost model. The diffusivity values varied from1.1103 × 10^-10m^2·s^-1to 4.1397 × 10^-10m^2·s^-1 and mass transfer coefficient varied in the range of 2.6433 × 10^-7–8.7203 × 10^-7m·s^-1. The activation energy was obtained to be 27.86 kJ·mol^-1. The quality assessment results showed that the total crocin content increased, when the temperature increased up to90 ℃ but, in higher temperatures, the amount of crocin decreased slightly. The total safranal content of the samples decreased slightly when drying temperature increased from 60 ℃ to 70 ℃ and then continuously increased up to 110 ℃. Also, the amount of picrocrocin increased from 83.1 to 93.3 as the drying temperature increased from 60 ℃ to 100 ℃.展开更多
The most recent in vitro tests used to determine metal bioaccessiblility are generally time-consuming and expensive. This study aimed at determining potential relationships between the concentrations of metals extract...The most recent in vitro tests used to determine metal bioaccessiblility are generally time-consuming and expensive. This study aimed at determining potential relationships between the concentrations of metals extracted using single-extraction methods and the concentrations of bioaccessible metals assessed by a harmonised in vitro test, the Unified BARGE Method (UBM). A total number of 27 soil samples were collected from kitchen gardens and lawns with various physicochemical parameters and contamination levels. Significant relationships were obtained between Cd, Pb and Zn extracted in gastric and gastrointestinal phases and using single extractions. The best relationhips were established using acetic and citric acids for Cd, whereas for Pb, citric acid and ethylenedi- aminetetraacetic acid (EDTA) were identified as the best extractants. These relationships were improved by means of a linear multiple regression with a downward stepwise procedure involving agronomic parameters (soil cation exchange capacity and assimilated P). This method highlighted the fact that the cation exchange capacity and P contents in soils were the two main parameters that controlled the human bioaccessibility of Cd, Pb and Zn in the gastric phase. Besides, the metal concentrations extracted with the acetic and citric acids correlated well with the metal concentrations in the gastric and gastrointestinal phases, suggesting that the bioaceessible metals were mainly in a soluble form, weakly bound to the organic matter and associated with the carbonates and the Fe and Mn oxides/hydroxides in soils.展开更多
Although to date some technologies producing bio-based phosphorus(P) fertilizers have been proposed and implemented, the efficient use of the recovered products is still limited due to legislative constraints and lack...Although to date some technologies producing bio-based phosphorus(P) fertilizers have been proposed and implemented, the efficient use of the recovered products is still limited due to legislative constraints and lack of insights in the P release with time and in the corresponding mechanisms. The aim of this work was to evaluate the fertilizer performance in terms of P release and use efficiency of recovered struvite, FePO_4-sludge, digestate, and animal manure as compared to fossil reserve-based mineral triple superphosphate(TSP). First, product physicochemical characteristics and P fractions in the context of European fertilizer legislation were assessed. Next, a controlled greenhouse experiment was set up to evaluate plant reactions as well as changes of P availability in a sandy soil with high P status and a Rheinsand soil with low P status. Soil P fractions were determined in the extracts with water, ammonium lactate and CaCl_2, and in soil solution sampled with Rhizon soil moisture samplers. Based on all results, it is worth conducting long-term field trials to evaluate the P release effect of struvite and digestate as compared to animal manure and TSP on different soil types with varying P status. These products showed promise as sustainable substitutes for conventional P fertilizers and could contribute to a more efficient use of P in agriculture. A refined classification of P application standards/recommendations in terms of soil P status, soil texture, and fertilizer characteristics, next to the crop P demand, is recommended. Moreover, the additional use of Rhizon samplers for determination of direct available P, including dissolved organic P, is proposed for better understanding and categorization of different P fertilizers in environmental and fertilizer legislations.展开更多
High costs and low catalytic efficiency of metalloporphyrins, which are an analogue of cytochrome P450 enzyme, are the bot-tlenecks in the industrialization of biomimetic hydrocarbon oxidation reactions. The basic pri...High costs and low catalytic efficiency of metalloporphyrins, which are an analogue of cytochrome P450 enzyme, are the bot-tlenecks in the industrialization of biomimetic hydrocarbon oxidation reactions. The basic principle and research technique of physical organic chemistry were applied to the process of biomimetic oxidation of hydrocarbon catalyzed by metalloporphyrins. This biomimetic technology could be adapted to bulk chemicals production by developing the new methods for efficient scale-up synthesis of metalloporphyrins, new pathways for molecular oxygen activation on an industrial scale and new approaches to elevate the catalytic efficiency of metalloporphyrins. This review mainly focuses on research carried out in our group.展开更多
The sustainable development of our future represents an unorthodox challenge in sciences and technologies.The exploration of unconventional chemical reactivities that could potentially result in more sustainable chemi...The sustainable development of our future represents an unorthodox challenge in sciences and technologies.The exploration of unconventional chemical reactivities that could potentially result in more sustainable chemical productions with efficient utilization of resource and inherent prevention of waste will provide the foundation for the synthetic chemistry of our future.As part of this endeavor,we have explored metal-mediated reactions in water to minimize protection-deprotection and the use of organic solvents,catalytic nucleophilic additions via C-H reactions to avoid generation and use of stoichiometric organic halides and metal in water,and Cross-Dehydrogenative-Coupling(CDC) reactions to minimize overall transformation steps.展开更多
文摘AIM: Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD), and progresses to the end stage of liver disease. Biochemical markers of liver fibrosis are strongly associated with the degree of histological liver fibrosis in patients with chronic liver disease. However, data are few on the usefulness of markers in NAFLD patients. The aim of this study was to identify better noninvasive predictors of hepatic fibrosis, with special focus on markers of liver fibrosis, type VI collagen 7S domain and hyaluronic acid. METHODS: One hundred and twelve patients with histologically proven NAFLD were studied. RESULTS: The histological stage of NAFLD correlated with several clinical and biochemical variables, the extent of hepatic fibrosis and the markers of liver fibrosis were relatively strong associated. The best cutoff values to detect NASH were assessed by using receiver operating characteristic analysis: type VI collagen 75 domain ≥5.0 ng/mL, hyaluronic acid ≥43 ng/mL. Both markers had a high positive predictive value: type VI collagen 7S domain, 86% and hyaluronic acid, 92%. Diagnostic accuracies of these markers were evaluated to detect severe fibrosis. Both markers showed high negative predictive values: type VI collagen 7S domain (≥5.0 ng/mL), 84% and hyaluronic acid (≥50 ng/mL), 78%, and were significantly and independently associated with the presence of NASH or severe fibrosis by logistic regression analysis. CONCLUSION: Both markers of liver fibrosis are useful in discriminating NASH from fatty liver alone or patients with severe fibrosis from patients with non-severe fibrosis.
基金Supported by Special Fund for Scientific Research of the Ministry of Agriculture and Finance(Official Letter No.[2016]6 of the Ministry of Agriculture and Finance)National Science and Technology Support Program(2015BAD05B02)+1 种基金Natural Science Foundation of Hunan(2015JJ2081)Postdoctoral Sustentation Fund(2014M562110)~~
文摘The effects of 4 passivators, zeolite, lime, red mud and peanut shell biochar, on the fixation of Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils were studied by passivator culture experiment in order to screen out the passivator with better fixation effects. The results showed that the soil pH values of zeolite, lime, red mud and peanut shell biochar increased significantly by 0.511.02, 0.821.29, 0.720.89 and 0.300.35 respectively. The effects of 4 passivators on the fixation of Cd and Zn in soil are lime>red mud>zeolite>peanut shell biochar. The order of effects on the fixation of Pb is red mud>lime>zeolite>peanut shell biochar. The order of the fixation effects of Cu is red mud>lime>peanut shell carbon>zeolite. The contents of Cd, Pb, Cu and Zn in the extractable state of CaCl2 decreased with the increase in the dosage of 4 passivators. Lime and red mud showed good fixation effects on Cd, Pb, Cu and Zn. The contents of Cd, Pb, Cu and Zn in the extractable state of CaCl2 at the low dosage(2.5 g/kg) of lime and red mud decreased by 41%, 84%, 76% and 83% respectively. Soil pH value was negatively correlated with CaCl2-Cd, Pb, Cu and Zn(P<0.01). Lime and red mud had significant fixation effects on Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils at low application dosages.
文摘Saffron is the most precious and expensive agricultural product. A dehydration treatment is necessary to convert Crocus sativus L. stigmas into saffron spice. To the best of our knowledge, no information on mass transfer parameters of saffron stigmas is available in the literature. This study aimed at investigating the moisture transfer parameters and quality attributes of saffron stigmas under infrared treatment at different temperatures(60,70, …, 110 ℃). It was observed that the dehydration process of the samples occurred in a short accelerating rate period at the start followed by a falling rate period. The effective moisture diffusivity and convective mass transfer coefficient were determined by using the Dincer and Dost model. The diffusivity values varied from1.1103 × 10^-10m^2·s^-1to 4.1397 × 10^-10m^2·s^-1 and mass transfer coefficient varied in the range of 2.6433 × 10^-7–8.7203 × 10^-7m·s^-1. The activation energy was obtained to be 27.86 kJ·mol^-1. The quality assessment results showed that the total crocin content increased, when the temperature increased up to90 ℃ but, in higher temperatures, the amount of crocin decreased slightly. The total safranal content of the samples decreased slightly when drying temperature increased from 60 ℃ to 70 ℃ and then continuously increased up to 110 ℃. Also, the amount of picrocrocin increased from 83.1 to 93.3 as the drying temperature increased from 60 ℃ to 100 ℃.
基金the Nord-Pas de Calais Council and Agence de l’Environnement et de la Matrise de l’Energie (ADEME), France, for the financial support of this research
文摘The most recent in vitro tests used to determine metal bioaccessiblility are generally time-consuming and expensive. This study aimed at determining potential relationships between the concentrations of metals extracted using single-extraction methods and the concentrations of bioaccessible metals assessed by a harmonised in vitro test, the Unified BARGE Method (UBM). A total number of 27 soil samples were collected from kitchen gardens and lawns with various physicochemical parameters and contamination levels. Significant relationships were obtained between Cd, Pb and Zn extracted in gastric and gastrointestinal phases and using single extractions. The best relationhips were established using acetic and citric acids for Cd, whereas for Pb, citric acid and ethylenedi- aminetetraacetic acid (EDTA) were identified as the best extractants. These relationships were improved by means of a linear multiple regression with a downward stepwise procedure involving agronomic parameters (soil cation exchange capacity and assimilated P). This method highlighted the fact that the cation exchange capacity and P contents in soils were the two main parameters that controlled the human bioaccessibility of Cd, Pb and Zn in the gastric phase. Besides, the metal concentrations extracted with the acetic and citric acids correlated well with the metal concentrations in the gastric and gastrointestinal phases, suggesting that the bioaceessible metals were mainly in a soluble form, weakly bound to the organic matter and associated with the carbonates and the Fe and Mn oxides/hydroxides in soils.
基金supported by the European Commission under the Interreg IVb NWE Project Arbor(No.Interreg IVB 223G)the Environmental&Energy Technology Innovation Platform(MIP),Belgium+2 种基金the Natural Science and Engineering Research Council of Canada(NSERC)the Fonds de Recherche de Québec sur la Nature et les Technologies(FRQNT),CanadaPrimodal Inc.,Hamilton,Canada
文摘Although to date some technologies producing bio-based phosphorus(P) fertilizers have been proposed and implemented, the efficient use of the recovered products is still limited due to legislative constraints and lack of insights in the P release with time and in the corresponding mechanisms. The aim of this work was to evaluate the fertilizer performance in terms of P release and use efficiency of recovered struvite, FePO_4-sludge, digestate, and animal manure as compared to fossil reserve-based mineral triple superphosphate(TSP). First, product physicochemical characteristics and P fractions in the context of European fertilizer legislation were assessed. Next, a controlled greenhouse experiment was set up to evaluate plant reactions as well as changes of P availability in a sandy soil with high P status and a Rheinsand soil with low P status. Soil P fractions were determined in the extracts with water, ammonium lactate and CaCl_2, and in soil solution sampled with Rhizon soil moisture samplers. Based on all results, it is worth conducting long-term field trials to evaluate the P release effect of struvite and digestate as compared to animal manure and TSP on different soil types with varying P status. These products showed promise as sustainable substitutes for conventional P fertilizers and could contribute to a more efficient use of P in agriculture. A refined classification of P application standards/recommendations in terms of soil P status, soil texture, and fertilizer characteristics, next to the crop P demand, is recommended. Moreover, the additional use of Rhizon samplers for determination of direct available P, including dissolved organic P, is proposed for better understanding and categorization of different P fertilizers in environmental and fertilizer legislations.
基金supported by the National Natural Science Foundation of China (0142003, 20376018, 2890047, 29372047 , 2950041)National High-Tech Research & Development Program of China (863 Program, 2002AA321070 and 2006AA32Z467)National Key Technologies R & D Program of China (2004BA322B)
文摘High costs and low catalytic efficiency of metalloporphyrins, which are an analogue of cytochrome P450 enzyme, are the bot-tlenecks in the industrialization of biomimetic hydrocarbon oxidation reactions. The basic principle and research technique of physical organic chemistry were applied to the process of biomimetic oxidation of hydrocarbon catalyzed by metalloporphyrins. This biomimetic technology could be adapted to bulk chemicals production by developing the new methods for efficient scale-up synthesis of metalloporphyrins, new pathways for molecular oxygen activation on an industrial scale and new approaches to elevate the catalytic efficiency of metalloporphyrins. This review mainly focuses on research carried out in our group.
基金the Canada Research Chair (Tier I) foundationthe E. B. Eddy Endowment Fund+1 种基金the CFI, NSERC, FQRNTthe NSF and the NSF-EPA Joint Program for a Sustainable Environment for partial support of our research over the years
文摘The sustainable development of our future represents an unorthodox challenge in sciences and technologies.The exploration of unconventional chemical reactivities that could potentially result in more sustainable chemical productions with efficient utilization of resource and inherent prevention of waste will provide the foundation for the synthetic chemistry of our future.As part of this endeavor,we have explored metal-mediated reactions in water to minimize protection-deprotection and the use of organic solvents,catalytic nucleophilic additions via C-H reactions to avoid generation and use of stoichiometric organic halides and metal in water,and Cross-Dehydrogenative-Coupling(CDC) reactions to minimize overall transformation steps.