Wave fields in Bohai Sea from 1985 to 2004 were simulated using SWAN wave model by inputting high-resolution hindcast wind fields dataset. Comparisons of wave heights between simulation and observation show good agree...Wave fields in Bohai Sea from 1985 to 2004 were simulated using SWAN wave model by inputting high-resolution hindcast wind fields dataset. Comparisons of wave heights between simulation and observation show good agreement in general. According to the annual extreme values of simulation, this paper gives wave extreme parameters with different return-period for all computation grids in Bohai sea.展开更多
In-situ observation is restricted by the strong wind and waves in the Southern Ocean.A Westerlies EnvironmentalMonitoring Buoy(WEMB)was firstly deployed in the Southern Ocean during China’s 35th Antarctic Expedition,...In-situ observation is restricted by the strong wind and waves in the Southern Ocean.A Westerlies EnvironmentalMonitoring Buoy(WEMB)was firstly deployed in the Southern Ocean during China’s 35th Antarctic Expedition,facilitating further understanding of the oceanic environmental characteristics of this region.With the develop-ment of technology and the improvement of data processing methods,the accuracy of satellite altimeter productsis constantly improved,thus making it possible to inspect and evaluate the in-situ observation data.Based on theL3 products of multiple satellite altimeters,this paper analyzes and corrects the significant wave height(SWH)data of WEMB by means of data matching,error statistics,and linear least-squares fitting.Through this study,the authors obtained the following results.The effect of gravitational acceleration changes with latitude on SWHaccuracy is fairly small.Due to the low response of WEMB to high-frequency waves,there is a systematic devia-tion.A feasible correction method is therefore proposed to improve the SWH accuracy of WEMB.The temporalvariation of the corrected SWH is highly consistent with that of the 10 m wind during the observation period,and its average value reaches 3.8 m.展开更多
Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave he...Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave height in this paper.Twenty-eight-year time series of wave data collected from three ocean buoys near San Francisco along the California coast are analyzed.It is proved theoretically that the computation error will be reduced by using as many measured data as possible for the calculation of significant wave height.Measured significant wave height at one buoy location is compared with the calculated value based on the data from two other adjacent buoys.The results indicate that the linear mean square estimation method can be well applied to the calculation and prediction of significant wave height in coastal regions.展开更多
Laizhou Bay and its adjacent waters are of great importance to China's marine oil and gas development. It is therefore crucial to estimate retttrn-period values of marine environmental variables in this region to ens...Laizhou Bay and its adjacent waters are of great importance to China's marine oil and gas development. It is therefore crucial to estimate retttrn-period values of marine environmental variables in this region to ensure the safety and success of maritime engineering and maritime exploration. In this study, we used numerical simulations to estimate extreme wave height, sea current velocity and sea-level height in westem Laizhou Bay. The results show that the sea-level rise starts at the mouth of the bay, increases toward west/southwest, and reaches its maximum in the deepest basin of the bay. The 100-year return-period values of sea level rise can reach 3.4-4.0m in the western bay. The elevation of the western part of the Qingdong Oil Field would remain above the sea sur- face during extreme low sea level, while the rest of the oil field would be 1,6-2.4m below the sea surface. The return-period value of wave height is strongly affected by water depth; in fact, its spatial distribution is similar to the isobath's. The 100-year return-period values of effective wave height can be 6m or higher in the central bay and be more than 1 m in the shallow water near shore. The 100-year return-period values of current velocity is about 1.2-1.8 ms-1 in the Qingdong Oil Field. These results provide scientific basis for ensuring construction safety and reducing construction cost,展开更多
A new model is proposed to estimate the significant wave heights with ERS-1/2 scatterometer data. The results show that the relationship between wave parameters and radar backscattering cross section is similar to tha...A new model is proposed to estimate the significant wave heights with ERS-1/2 scatterometer data. The results show that the relationship between wave parameters and radar backscattering cross section is similar to that between wind and the radar backscattering cross section. Therefore, the relationship between significant wave height and the radar backscattering cross section is established with a neural network algorithm, which is, if the average wave period is ≤7s, the root mean square of significant wave height retrieved from ERS-1/2 data is 0.51 m, or 0.72 m if it is >7s otherwise.展开更多
This paper presents the long-term climate changes of significant wave height(Hs) in 1958–2001 over the entire global ocean using the 45-year European Centre for Medium-Range Weather Forecasts(ECMWF) Reanalysis(ERA-40...This paper presents the long-term climate changes of significant wave height(Hs) in 1958–2001 over the entire global ocean using the 45-year European Centre for Medium-Range Weather Forecasts(ECMWF) Reanalysis(ERA-40) wave data. The linear trends in Hs and regional and seasonal differences of the linear trends for Hs were calculated. Results show that the Hs exhibits a significant increasing trend of about 4.6 cm decade-1 in the global ocean as a whole over the last 44 years. The Hs changes slowly during the periods 1958–1974 and 1980–1991, while it increases consistently during the periods 1975–1980 and 1995–1998. The Hs reaches its lowest magnitude in 1975, with annual average wave height about 2 m. In 1992, the Hs has the maximum value of nearly 2.60 m. The Hs in most ocean waters has a significant increasing trend of 2–14 cm decade-1 over the last 44 years. The linear trend exhibits great regional differences. Areas with strong increasing trend of Hs are mainly distributed in the westerlies of the southern Hemisphere and the northern Hemisphere. Only some small areas show obvious decreasing in Hs. The long-term trend of Hs in DJF(December, January, February) and MAM(March, April, May) is much more stronger than that in JJA(June, July, August) and SON(September, October, November). The linear trends of the Hs in different areas are different in different seasons; for instance, the increasing trend of Hs in the westerlies of the Pacific Ocean mainly appears in MAM and DJF.展开更多
In this paper, we propose a parallel data assimilation module based on ensemble optimal interpolation (EnOI). We embedded the method into the full-spectral third-generation wind-wave model, WAVEWATCH III Version 3.1...In this paper, we propose a parallel data assimilation module based on ensemble optimal interpolation (EnOI). We embedded the method into the full-spectral third-generation wind-wave model, WAVEWATCH III Version 3.14, producing a wave data assimilation system. We present our preliminary experiments assimilating altimeter significant wave heights (SWH) using the EnOI-based wave assimilation system. Waters north of 15°S in the Indian Ocean and South China Sea were chosen as the target computational domain, which was two-way nested into the global implementation of the WAVEWATCH III. The wave model was forced by six-hourly ocean surface wind velocities from the cross-calibrated multi-platform wind vector dataset. The assimilation used along-track SWH data from the Jason-2 altimeter. We evaluated the effect of the assimilation on the analyses and hindcasts, and found that our technique was effective. Although there was a considerable mean bias in the control SWHs, a month-long consecutive assimilation reduced the bias by approximately 84% and the root mean-square error (RMSE) by approximately 65%. Improvements in the SWH RMSE for both the analysis and hindcast periods were more significant in July than January, because of the monsoon climate. The improvement in model skill persisted for up to 48 h in July. Furthermore, the SWH data assimilation had the greatest impact in areas and seasons where and when the sea-states were dominated by swells.展开更多
Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields ...Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed(WS) and significant wave height(SWH) in the China Seas over the period 1988–2011 using the Cross-Calibrated Multi-Platform(CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III(WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988–2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s^(-1)yr^(-1) and 1.52 cm yr^(-1), respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Ni?o and a significant increase in the occurrence of gale force winds in the region.展开更多
基金supported by National Nature Science Foundation of China, China National Basic Research Program (Grant No. 2009CB421201)
文摘Wave fields in Bohai Sea from 1985 to 2004 were simulated using SWAN wave model by inputting high-resolution hindcast wind fields dataset. Comparisons of wave heights between simulation and observation show good agreement in general. According to the annual extreme values of simulation, this paper gives wave extreme parameters with different return-period for all computation grids in Bohai sea.
基金supported by the National Key R&D Program of China[grant number 2017YFC1403300 and 2016YFC1401701]。
文摘In-situ observation is restricted by the strong wind and waves in the Southern Ocean.A Westerlies EnvironmentalMonitoring Buoy(WEMB)was firstly deployed in the Southern Ocean during China’s 35th Antarctic Expedition,facilitating further understanding of the oceanic environmental characteristics of this region.With the develop-ment of technology and the improvement of data processing methods,the accuracy of satellite altimeter productsis constantly improved,thus making it possible to inspect and evaluate the in-situ observation data.Based on theL3 products of multiple satellite altimeters,this paper analyzes and corrects the significant wave height(SWH)data of WEMB by means of data matching,error statistics,and linear least-squares fitting.Through this study,the authors obtained the following results.The effect of gravitational acceleration changes with latitude on SWHaccuracy is fairly small.Due to the low response of WEMB to high-frequency waves,there is a systematic devia-tion.A feasible correction method is therefore proposed to improve the SWH accuracy of WEMB.The temporalvariation of the corrected SWH is highly consistent with that of the 10 m wind during the observation period,and its average value reaches 3.8 m.
基金support for this study was provided by the National Natural Science Foundation of China (No.40776006)Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060423009)the Science and Technology Development Program of Shandong Province (Grant No.2008GGB01099)
文摘Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave height in this paper.Twenty-eight-year time series of wave data collected from three ocean buoys near San Francisco along the California coast are analyzed.It is proved theoretically that the computation error will be reduced by using as many measured data as possible for the calculation of significant wave height.Measured significant wave height at one buoy location is compared with the calculated value based on the data from two other adjacent buoys.The results indicate that the linear mean square estimation method can be well applied to the calculation and prediction of significant wave height in coastal regions.
基金supported by the National Natural Science Foundation for the Project ‘Formation and development of the muddy deposition in the central south Yellow Sea, and its relation with climate and environmental change (41030856)’the Shandong Natural Science Foun-dation for the Project ‘Seasonal variation and its mechanism of suspended sediment distribution along the Shandong Peninsula (BS2012HZ022)’+2 种基金the project of ‘Ocean-Land interaction and coastal geological hazard (GZH201100203)’the NSFC project ‘Mechanism on strong wind’s effect on submarine pipeline’s stability’ (41006024)the Taishan Scholar Project
文摘Laizhou Bay and its adjacent waters are of great importance to China's marine oil and gas development. It is therefore crucial to estimate retttrn-period values of marine environmental variables in this region to ensure the safety and success of maritime engineering and maritime exploration. In this study, we used numerical simulations to estimate extreme wave height, sea current velocity and sea-level height in westem Laizhou Bay. The results show that the sea-level rise starts at the mouth of the bay, increases toward west/southwest, and reaches its maximum in the deepest basin of the bay. The 100-year return-period values of sea level rise can reach 3.4-4.0m in the western bay. The elevation of the western part of the Qingdong Oil Field would remain above the sea sur- face during extreme low sea level, while the rest of the oil field would be 1,6-2.4m below the sea surface. The return-period value of wave height is strongly affected by water depth; in fact, its spatial distribution is similar to the isobath's. The 100-year return-period values of effective wave height can be 6m or higher in the central bay and be more than 1 m in the shallow water near shore. The 100-year return-period values of current velocity is about 1.2-1.8 ms-1 in the Qingdong Oil Field. These results provide scientific basis for ensuring construction safety and reducing construction cost,
基金Supported by the National High Technology Research and Development Program of China (863 Program) (No.2008AA09Z102)the Canadian Space Agency (CSA) GRIP Program.
文摘A new model is proposed to estimate the significant wave heights with ERS-1/2 scatterometer data. The results show that the relationship between wave parameters and radar backscattering cross section is similar to that between wind and the radar backscattering cross section. Therefore, the relationship between significant wave height and the radar backscattering cross section is established with a neural network algorithm, which is, if the average wave period is ≤7s, the root mean square of significant wave height retrieved from ERS-1/2 data is 0.51 m, or 0.72 m if it is >7s otherwise.
基金supported by the National Ky Basic Research Development Program(Grant Nos.2015CB453200,2013CB956200,2012CB957803,2010CB950400)the National Natural Science Foundation of China(Grant Nos.41430426,41490642,41275086,41475070)
文摘This paper presents the long-term climate changes of significant wave height(Hs) in 1958–2001 over the entire global ocean using the 45-year European Centre for Medium-Range Weather Forecasts(ECMWF) Reanalysis(ERA-40) wave data. The linear trends in Hs and regional and seasonal differences of the linear trends for Hs were calculated. Results show that the Hs exhibits a significant increasing trend of about 4.6 cm decade-1 in the global ocean as a whole over the last 44 years. The Hs changes slowly during the periods 1958–1974 and 1980–1991, while it increases consistently during the periods 1975–1980 and 1995–1998. The Hs reaches its lowest magnitude in 1975, with annual average wave height about 2 m. In 1992, the Hs has the maximum value of nearly 2.60 m. The Hs in most ocean waters has a significant increasing trend of 2–14 cm decade-1 over the last 44 years. The linear trend exhibits great regional differences. Areas with strong increasing trend of Hs are mainly distributed in the westerlies of the southern Hemisphere and the northern Hemisphere. Only some small areas show obvious decreasing in Hs. The long-term trend of Hs in DJF(December, January, February) and MAM(March, April, May) is much more stronger than that in JJA(June, July, August) and SON(September, October, November). The linear trends of the Hs in different areas are different in different seasons; for instance, the increasing trend of Hs in the westerlies of the Pacific Ocean mainly appears in MAM and DJF.
基金Supported by the National Special Research Fund for Non-Profit Marine Sector(Nos.201005033,201105002)the National High Technology Research and Development Program of China(863 Program)(No.2012AA091801)+1 种基金the National Natural Science Foundation of China(No.U1133001)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)
文摘In this paper, we propose a parallel data assimilation module based on ensemble optimal interpolation (EnOI). We embedded the method into the full-spectral third-generation wind-wave model, WAVEWATCH III Version 3.14, producing a wave data assimilation system. We present our preliminary experiments assimilating altimeter significant wave heights (SWH) using the EnOI-based wave assimilation system. Waters north of 15°S in the Indian Ocean and South China Sea were chosen as the target computational domain, which was two-way nested into the global implementation of the WAVEWATCH III. The wave model was forced by six-hourly ocean surface wind velocities from the cross-calibrated multi-platform wind vector dataset. The assimilation used along-track SWH data from the Jason-2 altimeter. We evaluated the effect of the assimilation on the analyses and hindcasts, and found that our technique was effective. Although there was a considerable mean bias in the control SWHs, a month-long consecutive assimilation reduced the bias by approximately 84% and the root mean-square error (RMSE) by approximately 65%. Improvements in the SWH RMSE for both the analysis and hindcast periods were more significant in July than January, because of the monsoon climate. The improvement in model skill persisted for up to 48 h in July. Furthermore, the SWH data assimilation had the greatest impact in areas and seasons where and when the sea-states were dominated by swells.
基金the Global Change and Ocean-Atmosphere Interaction National Special Project (No. 2016-523)the open foundation of the Key Laboratory of Renewable Energy, Chinese Academy of Sciences (No. Y707k31001)+4 种基金the Junior Fellowships for CAST Advanced Innovation Think-Tank Program (No. DXB-ZKQN 2016-019)the National Key Basic Research Development Program (No. 2012CB957803)the National Natural Science Foundation of China (Nos. 41490642, 41405062, 71371148)the Fundamental Research Funds for the Central Universities (No. 3132017301)the Science found- ation of China (Xi’an) Silk Road Academy (No. 2016SY02)
文摘Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed(WS) and significant wave height(SWH) in the China Seas over the period 1988–2011 using the Cross-Calibrated Multi-Platform(CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III(WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988–2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s^(-1)yr^(-1) and 1.52 cm yr^(-1), respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Ni?o and a significant increase in the occurrence of gale force winds in the region.