土是一种具有多孔介质的岩土工程材料,其微观孔隙结构决定着宏观渗透性。为了研究渗透特性与孔隙结构之间的依存关系,以石灰改良黄土为研究对象,首先对不同石灰掺量下的改良黄土进行室内变水头渗透试验,随后选取有代表性土样进行扫描电...土是一种具有多孔介质的岩土工程材料,其微观孔隙结构决定着宏观渗透性。为了研究渗透特性与孔隙结构之间的依存关系,以石灰改良黄土为研究对象,首先对不同石灰掺量下的改良黄土进行室内变水头渗透试验,随后选取有代表性土样进行扫描电镜(SEM)试验,并利用Image-Pro Plus 6.0(IPP)图像处理软件统计不同石灰掺量下改良黄土的微观孔隙结构参数,结合室内渗透试验结果建立宏观渗透特性与微观孔隙结构之间的联系。结果表明:随着石灰掺量的增加,充填于大中孔隙的结晶胶结物不断增多,对应微观图像中大中孔隙的数量、面积、面孔隙度及大孔的平均直径逐渐减小,而微小孔隙的数量、面积及孔隙的分形维数呈上升趋势,孔隙结构趋向复杂化,使得有效渗流通道占比减小,从而降低了土体渗透性,说明微观孔隙结构参数与宏观物理性质存在密切联系,在一定程度上可以反映宏观物理性质的变化。展开更多
From the continuum mechanics perspective, an attempt was made to clarify the role of Terzaghi's effective stress in the theoretical analysis of saturated soil subjected to seepage. The necessity of performing a co...From the continuum mechanics perspective, an attempt was made to clarify the role of Terzaghi's effective stress in the theoretical analysis of saturated soil subjected to seepage. The necessity of performing a coupled hydromechanical analysis to solve the seepage-deformation interaction problem was illustrated by examining the equations of static equilibrium among the effective stress, seepage force, pore-water pressure and total stress. The conceptual definition of stress variable that satisfies the principles of continuum mechanics is applied in the coupled hydromechanical analysis. It is shown that Terzaghi's effective stress is in fact not a stress variable under seepage conditions, and the seepage force acting on the soil skeleton cannot be viewed as a body force. This offers a clue to the underlying cause of a paradox between the real Pascal's hydrostatic state and the hydrostatic state predicted by a class of continuum hydromechanical theories.展开更多
Coalbed gas non-Darcy flow has been observed in high permeable fracture systems,and some mathematical and numerical models have been proposed to study the effects of non-Darcy flow using Forchheimer non-Darcy model.Ho...Coalbed gas non-Darcy flow has been observed in high permeable fracture systems,and some mathematical and numerical models have been proposed to study the effects of non-Darcy flow using Forchheimer non-Darcy model.However,experimental results show that the assumption of a constant Forchheimer factor may cause some limitations in using Forchheimer model to describe non-Darcy flow in porous media.In order to investigate the effects of non-Darcy flow on coalbed methane production,this work presents a more general coalbed gas non-Darcy flow model according to Barree-Conway equation,which could describe the entire range of relationships between flow velocity and pressure gradient from low to high flow velocity.An expanded mixed finite element method is introduced to solve the coalbed gas non-Darcy flow model,in which the gas pressure and velocity can be approximated simultaneously.Error estimate results indicate that pressure and velocity could achieve first-order convergence rate.Non-Darcy simulation results indicate that the non-Darcy effect is significant in the zone near the wellbore,and with the distance from the wellbore increasing,the non-Darcy effect becomes weak gradually.From simulation results,we have also found that the non-Darcy effect is more significant at a lower bottom-hole pressure,and the gas production from non-Darcy flow is lower than the production from Darcy flow under the same permeable condition.展开更多
文摘土是一种具有多孔介质的岩土工程材料,其微观孔隙结构决定着宏观渗透性。为了研究渗透特性与孔隙结构之间的依存关系,以石灰改良黄土为研究对象,首先对不同石灰掺量下的改良黄土进行室内变水头渗透试验,随后选取有代表性土样进行扫描电镜(SEM)试验,并利用Image-Pro Plus 6.0(IPP)图像处理软件统计不同石灰掺量下改良黄土的微观孔隙结构参数,结合室内渗透试验结果建立宏观渗透特性与微观孔隙结构之间的联系。结果表明:随着石灰掺量的增加,充填于大中孔隙的结晶胶结物不断增多,对应微观图像中大中孔隙的数量、面积、面孔隙度及大孔的平均直径逐渐减小,而微小孔隙的数量、面积及孔隙的分形维数呈上升趋势,孔隙结构趋向复杂化,使得有效渗流通道占比减小,从而降低了土体渗透性,说明微观孔隙结构参数与宏观物理性质存在密切联系,在一定程度上可以反映宏观物理性质的变化。
基金Project(51278171)supported by the National Natural Science Foundation of ChinaProject(B13024)supported by the"111"Project,China+1 种基金Projects(2014B04914,2011B02814,2010B28114)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(617608)supported by the Research Grants Council of the Hong Kong Special Administrative Region of China
文摘From the continuum mechanics perspective, an attempt was made to clarify the role of Terzaghi's effective stress in the theoretical analysis of saturated soil subjected to seepage. The necessity of performing a coupled hydromechanical analysis to solve the seepage-deformation interaction problem was illustrated by examining the equations of static equilibrium among the effective stress, seepage force, pore-water pressure and total stress. The conceptual definition of stress variable that satisfies the principles of continuum mechanics is applied in the coupled hydromechanical analysis. It is shown that Terzaghi's effective stress is in fact not a stress variable under seepage conditions, and the seepage force acting on the soil skeleton cannot be viewed as a body force. This offers a clue to the underlying cause of a paradox between the real Pascal's hydrostatic state and the hydrostatic state predicted by a class of continuum hydromechanical theories.
基金Projects(91330106,11171190)supported by the National Natural Science Foundation of ChinaProjects(15CX05065A,15CX05003A)supported by the Fundamental Research Funds for the Central Universities,China
文摘Coalbed gas non-Darcy flow has been observed in high permeable fracture systems,and some mathematical and numerical models have been proposed to study the effects of non-Darcy flow using Forchheimer non-Darcy model.However,experimental results show that the assumption of a constant Forchheimer factor may cause some limitations in using Forchheimer model to describe non-Darcy flow in porous media.In order to investigate the effects of non-Darcy flow on coalbed methane production,this work presents a more general coalbed gas non-Darcy flow model according to Barree-Conway equation,which could describe the entire range of relationships between flow velocity and pressure gradient from low to high flow velocity.An expanded mixed finite element method is introduced to solve the coalbed gas non-Darcy flow model,in which the gas pressure and velocity can be approximated simultaneously.Error estimate results indicate that pressure and velocity could achieve first-order convergence rate.Non-Darcy simulation results indicate that the non-Darcy effect is significant in the zone near the wellbore,and with the distance from the wellbore increasing,the non-Darcy effect becomes weak gradually.From simulation results,we have also found that the non-Darcy effect is more significant at a lower bottom-hole pressure,and the gas production from non-Darcy flow is lower than the production from Darcy flow under the same permeable condition.