期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Bound State Solutions of Schrodinger Equation for Generalized Morse Potential with Position-Dependent Mass 被引量:1
1
作者 Altug Arda Ramazan Sever 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第7期51-54,共4页
The effective mass one-dimensional Schroedinger equation for the generalized Morse potential is solved by using Nikiforov-Uvarov method. Energy eigenvalues and corresponding eigenfunctions are computed analytically. T... The effective mass one-dimensional Schroedinger equation for the generalized Morse potential is solved by using Nikiforov-Uvarov method. Energy eigenvalues and corresponding eigenfunctions are computed analytically. The results are also reduced to the constant mass case. Energy eigenvalues are computed numerically for some diatomic molecules. They are in agreement with the ones obtained before. 展开更多
关键词 position dependent mass Schr5dinger equation generalized morse potential Nikiforov-Uvarovmethod energy eigenvalues EIGENFUNCTIONS
下载PDF
不同形状量子阱的量子限制效应 被引量:2
2
作者 张哲民 陈维友 +1 位作者 刘式墉 黄德修 《中国激光》 EI CAS CSCD 北大核心 1997年第8期725-728,共4页
采用差分法求解有效质量方程,考虑轻重空穴的混合效应及应变效应,对三种不同形状的量子阱的能带结构、价带态密度、跃迁矩阵元进行了比较。在阱宽相同的条件下,方阱有最大的限制能力,但抛物阱和三角阱有更平坦的态密度曲线,使得以... 采用差分法求解有效质量方程,考虑轻重空穴的混合效应及应变效应,对三种不同形状的量子阱的能带结构、价带态密度、跃迁矩阵元进行了比较。在阱宽相同的条件下,方阱有最大的限制能力,但抛物阱和三角阱有更平坦的态密度曲线,使得以抛物阱和三角阱为有源区的激光器和半导体激光放大器可以有较低的透明电流密度。同时价带子带的耦合强烈改变了跃迁矩阵元,这对量子阱的增益特性会产生影响。 展开更多
关键词 量子阱 量子限制效效应 有效质量方程 光电子学
原文传递
On Improving Accuracy of Finite-Element Solutions of the Effective-Mass Schr¨odinger Equation for Interdiffused Quantum Wells and Quantum Wires
3
作者 D.B.Topalovi V.V.Arsoski +3 位作者 S.Pavlovic N.A.Cukaric M.Z.Tadic F.M.Peeters 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第1期105-113,共9页
We use the Galerkin approach and the finite-element method to numerically solve the effective-mass Schr¨odinger equation.The accuracy of the solution is explored as it varies with the range of the numerical domai... We use the Galerkin approach and the finite-element method to numerically solve the effective-mass Schr¨odinger equation.The accuracy of the solution is explored as it varies with the range of the numerical domain.The model potentials are those of interdiffused semiconductor quantum wells and axially symmetric quantum wires.Also,the model of a linear harmonic oscillator is considered for comparison reasons.It is demonstrated that the absolute error of the electron ground state energy level exhibits a minimum at a certain domain range,which is thus considered to be optimal.This range is found to depend on the number of mesh nodes N approximately as α_0 log_e^(α1)(α_2N),where the values of the constants α_0,α_1,and α_2are determined by fitting the numerical data.And the optimal range is found to be a weak function of the diffusion length.Moreover,it was demonstrated that a domain range adaptation to the optimal value leads to substantial improvement of accuracy of the solution of the Schr¨odinger equation. 展开更多
关键词 intermixing quantum well quantum wire Schrodinger equation finite element adaptive
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部