Among the many approaches for studying the net primary productivity (NPP), a new method by using remote sensing was introduced in this paper. With spectral information source (the visible band, near infrared band and ...Among the many approaches for studying the net primary productivity (NPP), a new method by using remote sensing was introduced in this paper. With spectral information source (the visible band, near infrared band and thermal infrared band) of NOAA-AVHRR, we can get the relative index and parameters, which can be used for estimating NPP of terrestrial vegetation. By means of remote sensing, the estimation of biomass and NPP is mainly based on the models of light energy utilization. In other words, the biomass and NPP can be calculated from the relation among NPP, absorbed photosynthetical active radiation (APAR) and the rate (epsilon) of transformation of APAR to organic matter, thus: NPP = ( FPAR x PAR) x [epsilon * x sigma (T) x sigma (E) x sigma (S) x (1 - Y-m) x (1 - Y-g)]. Based upon remote sensing ( RS) and geographic information system (GIS), the NPP of terrestrial vegetation in China in every ten days was calculated, and the annual NPP was integrated. The result showed that the total NPP of terrestrial vegetation in China was 6.13 x 10(9) t C . a(-1) in 1990 and the maximum NPP was 1 812.9 g C/m(2). According to this result, the spatio-temporal distribution of NPP was analyzed. Comparing to the statistical models, the RS model, using area object other than point one, can better reflect the distribution of NPP, and match the geographic distribution of vegetation in China.展开更多
This paper aims to evaluate the effects of ultraviolet-Bradiation(UVBR) on Gracilaria lemaneiformis,a commercial red macroalga and an important source of agar. To study the in-vitro effect of UVBR on G. lemaneiformis,...This paper aims to evaluate the effects of ultraviolet-Bradiation(UVBR) on Gracilaria lemaneiformis,a commercial red macroalga and an important source of agar. To study the in-vitro effect of UVBR on G. lemaneiformis,this plant was cultivated and exposed to photosynthetically active radiation(PAR) at 40 μmol photons/(m2 ·s) and enhanced UVBR(0,0.36,0.72,1.08,1.44,and 1.80 k J/(m 2 ·d)) for 13 days. The samples were processed for histochemical analysis,and the growth rate,photosynthetic pigment contents,photosynthetic performance,reactive oxygen species levels,membrane permeability,malonyl dialdehyde contents and antioxidant capacity of G. lemaneiformis were investigated. After 13 days of exposure to PAR+UVBR,G. lemaneiformis showed photodamage and photoinhibition of photosynthetic pigments(chlorophylla and phycoerythrin),leading to a decreased photosynthetic efficiency. Further,there was a corresponding decrease in the relative growth rates and depigmentation and partial necrosis of the apical segments were noted after exposure to PAR+UVBR. Additionally,UVBR induced excess production of superoxide radicals and hydrogen peroxide,eliciting a marked cellular membrane damage and antioxidative response.展开更多
Wine is one of the most important Italian export products,and Nebbiolo is one of the most respected Italian grapes. In the summer of 2007,a measurement campaign was carried out in a Nebbiolo vineyard located in Vezza ...Wine is one of the most important Italian export products,and Nebbiolo is one of the most respected Italian grapes. In the summer of 2007,a measurement campaign was carried out in a Nebbiolo vineyard located in Vezza d’Alba,near Cuneo,Italy. Using a gauge of trade gases and some other instruments,we recorded the stomatal conductance and also some physiological parameters useful for estimating the dependence of stomatal conductance on environmental variables. The goal of this experiment was improving the parameterization of grapevine evapotranspiration through the assessment of the stomatal conductance and,in particular,of the functional dependence of the stomatal conductance on the following variables:the photosynthetically active radiation,the atmospheric temperature,the atmospheric moisture deficit,and the carbon dioxide concentration. The observations allowed us to check and,in some cases,to adapt the existing general parameterizations found in literature. The results showed some significant differences with the existing parameterizations concerning the atmospheric temperature,the atmospheric moisture deficit,and the carbon dioxide concentration. The parameterizations obtained in this experiment,although referring to a specific plant and site(namely the Nebbiolo at Vezza d’Alba),could allow assessment of the best environmental conditions under which the Nebbiolo grapevine production is the best,and in future could be tested for other grapevines or climates.展开更多
OBJECTIVE To reveal the biological effects and effective dosage in radiotherapy model which applies high single-dose irradiation by animal experiment. METHODS We inoculated subcutaneouly human pancreatic carcinoma cel...OBJECTIVE To reveal the biological effects and effective dosage in radiotherapy model which applies high single-dose irradiation by animal experiment. METHODS We inoculated subcutaneouly human pancreatic carcinoma cell line (MIA PaCa-2) in the lateral of the right lower extremity of the athymic mouse to grow transplantation tumor. While the median diameter of transplantation tumor reached 10 mm approximately, the animals were randomly divided into 7 groups (6 animals per group) and irradiation by different dose in one fixed with consciousness for fraction (0, 2, 5, 10, 17, 25, 35 Gy). All were kept on to be bred for observation of the change in gross tumor volume, calculation of delayed growth time and delayed growth curve. RESULTS With increased dose per fraction, cutaneous reaction on the neoplasma surface of the animal, which was mainly moist yellow effusion was more and more severe. When dosage is less than 10 Gy, all animals showed similar effects, that's the delayed tumor growth was not obvious. Tumors receiving more than 10 Gy in one fraction showed very good biological effect and the delayed tumor growth was obviously related to dosage. The difference in delayed tumor growth between the 2 groups was statistically significant. The delayed tumor growth time in 10, 17, 25 Gy group was respectively 3 weeks, 6 weeks and more. CONCLUSION The biological effect of the model which applies high single-dose irradiation (more than 10 Gy in one fraction) was very good. The effect of delayed tumor growth was obviously related to the dosage after transplantation tumor was radiated. Because of its higher dose per fraction and biological effects, the model of high single-dose irradiation can get better clinical effects.展开更多
文摘Among the many approaches for studying the net primary productivity (NPP), a new method by using remote sensing was introduced in this paper. With spectral information source (the visible band, near infrared band and thermal infrared band) of NOAA-AVHRR, we can get the relative index and parameters, which can be used for estimating NPP of terrestrial vegetation. By means of remote sensing, the estimation of biomass and NPP is mainly based on the models of light energy utilization. In other words, the biomass and NPP can be calculated from the relation among NPP, absorbed photosynthetical active radiation (APAR) and the rate (epsilon) of transformation of APAR to organic matter, thus: NPP = ( FPAR x PAR) x [epsilon * x sigma (T) x sigma (E) x sigma (S) x (1 - Y-m) x (1 - Y-g)]. Based upon remote sensing ( RS) and geographic information system (GIS), the NPP of terrestrial vegetation in China in every ten days was calculated, and the annual NPP was integrated. The result showed that the total NPP of terrestrial vegetation in China was 6.13 x 10(9) t C . a(-1) in 1990 and the maximum NPP was 1 812.9 g C/m(2). According to this result, the spatio-temporal distribution of NPP was analyzed. Comparing to the statistical models, the RS model, using area object other than point one, can better reflect the distribution of NPP, and match the geographic distribution of vegetation in China.
基金Supported by the Joint Funds of the National Natural Science Foundation of China and the Marine Science Research Center of People’s Government of Shandong Province(No.U1406403)the National Natural Science Foundation of China(No.3170458)
文摘This paper aims to evaluate the effects of ultraviolet-Bradiation(UVBR) on Gracilaria lemaneiformis,a commercial red macroalga and an important source of agar. To study the in-vitro effect of UVBR on G. lemaneiformis,this plant was cultivated and exposed to photosynthetically active radiation(PAR) at 40 μmol photons/(m2 ·s) and enhanced UVBR(0,0.36,0.72,1.08,1.44,and 1.80 k J/(m 2 ·d)) for 13 days. The samples were processed for histochemical analysis,and the growth rate,photosynthetic pigment contents,photosynthetic performance,reactive oxygen species levels,membrane permeability,malonyl dialdehyde contents and antioxidant capacity of G. lemaneiformis were investigated. After 13 days of exposure to PAR+UVBR,G. lemaneiformis showed photodamage and photoinhibition of photosynthetic pigments(chlorophylla and phycoerythrin),leading to a decreased photosynthetic efficiency. Further,there was a corresponding decrease in the relative growth rates and depigmentation and partial necrosis of the apical segments were noted after exposure to PAR+UVBR. Additionally,UVBR induced excess production of superoxide radicals and hydrogen peroxide,eliciting a marked cellular membrane damage and antioxidative response.
文摘Wine is one of the most important Italian export products,and Nebbiolo is one of the most respected Italian grapes. In the summer of 2007,a measurement campaign was carried out in a Nebbiolo vineyard located in Vezza d’Alba,near Cuneo,Italy. Using a gauge of trade gases and some other instruments,we recorded the stomatal conductance and also some physiological parameters useful for estimating the dependence of stomatal conductance on environmental variables. The goal of this experiment was improving the parameterization of grapevine evapotranspiration through the assessment of the stomatal conductance and,in particular,of the functional dependence of the stomatal conductance on the following variables:the photosynthetically active radiation,the atmospheric temperature,the atmospheric moisture deficit,and the carbon dioxide concentration. The observations allowed us to check and,in some cases,to adapt the existing general parameterizations found in literature. The results showed some significant differences with the existing parameterizations concerning the atmospheric temperature,the atmospheric moisture deficit,and the carbon dioxide concentration. The parameterizations obtained in this experiment,although referring to a specific plant and site(namely the Nebbiolo at Vezza d’Alba),could allow assessment of the best environmental conditions under which the Nebbiolo grapevine production is the best,and in future could be tested for other grapevines or climates.
文摘OBJECTIVE To reveal the biological effects and effective dosage in radiotherapy model which applies high single-dose irradiation by animal experiment. METHODS We inoculated subcutaneouly human pancreatic carcinoma cell line (MIA PaCa-2) in the lateral of the right lower extremity of the athymic mouse to grow transplantation tumor. While the median diameter of transplantation tumor reached 10 mm approximately, the animals were randomly divided into 7 groups (6 animals per group) and irradiation by different dose in one fixed with consciousness for fraction (0, 2, 5, 10, 17, 25, 35 Gy). All were kept on to be bred for observation of the change in gross tumor volume, calculation of delayed growth time and delayed growth curve. RESULTS With increased dose per fraction, cutaneous reaction on the neoplasma surface of the animal, which was mainly moist yellow effusion was more and more severe. When dosage is less than 10 Gy, all animals showed similar effects, that's the delayed tumor growth was not obvious. Tumors receiving more than 10 Gy in one fraction showed very good biological effect and the delayed tumor growth was obviously related to dosage. The difference in delayed tumor growth between the 2 groups was statistically significant. The delayed tumor growth time in 10, 17, 25 Gy group was respectively 3 weeks, 6 weeks and more. CONCLUSION The biological effect of the model which applies high single-dose irradiation (more than 10 Gy in one fraction) was very good. The effect of delayed tumor growth was obviously related to the dosage after transplantation tumor was radiated. Because of its higher dose per fraction and biological effects, the model of high single-dose irradiation can get better clinical effects.