期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于最小超球面密度的孤立点检测算法
1
作者 冯宇 苑易伟 《计算机技术与发展》 2019年第6期32-36,共5页
定义了最小超球面密度的概念,提出了一种基于最小超球面密度的孤立点检测算法(minimum hyper sphere density,MHSD)。该算法根据数据的 k 近邻和反 k 近邻获得数据的有效近邻,并使用最小超球面密度和有效近邻计算每个数据的密度背离程度... 定义了最小超球面密度的概念,提出了一种基于最小超球面密度的孤立点检测算法(minimum hyper sphere density,MHSD)。该算法根据数据的 k 近邻和反 k 近邻获得数据的有效近邻,并使用最小超球面密度和有效近邻计算每个数据的密度背离程度,进而计算每个数据的孤立程度,将孤立程度超过规定阈值的数据视为孤立点。实验数据为一个二维人工数据集和两个高维实际数据集,检测三个数据集的孤立点,对算法性能进行评估,并与经典的局部离群因子算法(local outlier factor,LOF)、离群影响因子算法(influenced outlierness,INFLO)和密度相似邻域离群因子算法(density similarity neighbor based outlier factor,DSNOF)进行比较。实验结果表明,基于最小超球面密度的孤立点检测算法可以准确检测出数据中的孤立点,且性能优于三种经典算法。 展开更多
关键词 孤立点检测 最小超球面 有效近邻 局部密度差 密度背离程度
下载PDF
一种自适应模糊连接点聚类算法
2
作者 王保锋 麻晓璇 李金星 《计算机与现代化》 2019年第10期55-59,65,共6页
模糊连接点聚类算法(Fuzzy Joint Points, FJP)用最大间隔下降法划分聚类的簇数目,这种确定簇数目的方法具有主观性,不利于算法的应用推广。针对此问题,提出一种基于有效近邻簇指标的自适应FJP聚类算法,通过Kernels-VCN指标来评估聚类... 模糊连接点聚类算法(Fuzzy Joint Points, FJP)用最大间隔下降法划分聚类的簇数目,这种确定簇数目的方法具有主观性,不利于算法的应用推广。针对此问题,提出一种基于有效近邻簇指标的自适应FJP聚类算法,通过Kernels-VCN指标来评估聚类的有效性,从而实现最佳簇数目的自适应确定,最后在UCI数据集和人工数据集上验证所提算法的可行性。 展开更多
关键词 模糊连接点聚类 有效近邻簇指标 最佳划分水平 最佳簇数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部