Carbon-enriched lignocelluloses are regarded as the perfect alternative for nonrenewable fossil fuel, and have a great potential to alleviate the increasing energy crisis and climate change. However, the tightly coval...Carbon-enriched lignocelluloses are regarded as the perfect alternative for nonrenewable fossil fuel, and have a great potential to alleviate the increasing energy crisis and climate change. However, the tightly covalent structure and strong intra and in- ter-molecular hydrogen bonding in lignoceUulose make it high recalcitrance to transformation due to the poor solubility in wa- ter or common organic solvents. Dissolution and transformation of lignocellulose and its constituents in ionic liquids have therefore attracted much attention recently due to the tunable physical-chemical properties. Here, ionic liquids with excellent dissolving capability for biomass and its ingredients were examined. The technologies for lignocellulose biorefining in the presence of ionic liquid solvents or catalysts were also summarized. Some pertinent suggestions for the future catalytic conver- sion and unitization of this sustained carbon-rich resource are proposed.展开更多
An improved acetylcholinesterase liquid crystal(LC) biosensor has been developed for the identification of organophosphates(OPs) by using a reactivator. When the acetylcholinesterases(AChEs) inhibited by different kin...An improved acetylcholinesterase liquid crystal(LC) biosensor has been developed for the identification of organophosphates(OPs) by using a reactivator. When the acetylcholinesterases(AChEs) inhibited by different kinds of OPs are reactived by a reactivator, the catalytic activity of AChEs can be recovered with different activation efficiency because of the different phosphorylation structures formed in the inhibited AChEs. Accordingly, the reactived AChEs can catalyze the hydrolysis of acetylthiocholine to generate thiocholine product in different degrees, which will result in different catalytic growth of AuNPs and further form distinct orientational response of LCs. Based on such a reactivation mechanism, the AChE LC biosensor with a simple, rapid and visual procedure achieves an obvious identification of three OPs pesticides, methamidophos, trichlorfon and paraoxon, by using a pralidoxime reactivator.展开更多
基金financial support of the National Natural Science Foundation of China (20876055, 21076085)the Natural Science Foundation of Guangdong Province (S2011020001472)the Fundamental Research Funds for the Central Universities, SCUT
文摘Carbon-enriched lignocelluloses are regarded as the perfect alternative for nonrenewable fossil fuel, and have a great potential to alleviate the increasing energy crisis and climate change. However, the tightly covalent structure and strong intra and in- ter-molecular hydrogen bonding in lignoceUulose make it high recalcitrance to transformation due to the poor solubility in wa- ter or common organic solvents. Dissolution and transformation of lignocellulose and its constituents in ionic liquids have therefore attracted much attention recently due to the tunable physical-chemical properties. Here, ionic liquids with excellent dissolving capability for biomass and its ingredients were examined. The technologies for lignocellulose biorefining in the presence of ionic liquid solvents or catalysts were also summarized. Some pertinent suggestions for the future catalytic conver- sion and unitization of this sustained carbon-rich resource are proposed.
基金supported by the International Scientific and Technological Cooperation Projects of China(2012DFR40480)the National Natural Science Foundation of China(21175037,21277042 and J1210040)
文摘An improved acetylcholinesterase liquid crystal(LC) biosensor has been developed for the identification of organophosphates(OPs) by using a reactivator. When the acetylcholinesterases(AChEs) inhibited by different kinds of OPs are reactived by a reactivator, the catalytic activity of AChEs can be recovered with different activation efficiency because of the different phosphorylation structures formed in the inhibited AChEs. Accordingly, the reactived AChEs can catalyze the hydrolysis of acetylthiocholine to generate thiocholine product in different degrees, which will result in different catalytic growth of AuNPs and further form distinct orientational response of LCs. Based on such a reactivation mechanism, the AChE LC biosensor with a simple, rapid and visual procedure achieves an obvious identification of three OPs pesticides, methamidophos, trichlorfon and paraoxon, by using a pralidoxime reactivator.