A mathematical model is developed based on a simplified mechanism of anaerobic digestion. The main objective is to quantitatively analyze the digestion process to optimize operating conditions and maintenance of this ...A mathematical model is developed based on a simplified mechanism of anaerobic digestion. The main objective is to quantitatively analyze the digestion process to optimize operating conditions and maintenance of this equipment, which could be used to test different materials and be able to apply these results to the possible scaling to bio-digesters installed in the field. The experiments were carried out in a hybrid system bio-digester photovoltaic cells. The bio-digester is made of stainless steel with dimensions to treat an average of 10 kg of raw material and produce biogas from different organic materials. The reactor has been conditioned with temperature sensors, pressure and methane gas that allow monitoring the concentration of the gas and the conditions of operation during the time of digestion. The system has a photovoltaic array to provide the energy required to keep the temperature constant, The experiment was conducted using materials such as goat manure mixed with household waste, and various formulations of these materials were prepared. The experimental results were used to test the mathematical model.展开更多
Porous organic polymers(POPs) have recently emerged as promising candidates for catalyzing oxygen reduction reaction(ORR).Compared to conventional Pt-based ORR catalysts, these newly developed porous materials, includ...Porous organic polymers(POPs) have recently emerged as promising candidates for catalyzing oxygen reduction reaction(ORR).Compared to conventional Pt-based ORR catalysts, these newly developed porous materials, including both non-precious metal based catalysts and metal-free catalysts, are more sustainable and cost-effective. Their porous structures and large surface areas facilitate mass and electron transport and boost the ORR kinetics. This mini-review will give a brief summary of recent development of POPs as electrocatalysts for the ORR. Some design principles, different POP structures, key factors for their ORR catalytic performance, and outlook of POP materials will be discussed.展开更多
文摘A mathematical model is developed based on a simplified mechanism of anaerobic digestion. The main objective is to quantitatively analyze the digestion process to optimize operating conditions and maintenance of this equipment, which could be used to test different materials and be able to apply these results to the possible scaling to bio-digesters installed in the field. The experiments were carried out in a hybrid system bio-digester photovoltaic cells. The bio-digester is made of stainless steel with dimensions to treat an average of 10 kg of raw material and produce biogas from different organic materials. The reactor has been conditioned with temperature sensors, pressure and methane gas that allow monitoring the concentration of the gas and the conditions of operation during the time of digestion. The system has a photovoltaic array to provide the energy required to keep the temperature constant, The experiment was conducted using materials such as goat manure mixed with household waste, and various formulations of these materials were prepared. The experimental results were used to test the mathematical model.
文摘Porous organic polymers(POPs) have recently emerged as promising candidates for catalyzing oxygen reduction reaction(ORR).Compared to conventional Pt-based ORR catalysts, these newly developed porous materials, including both non-precious metal based catalysts and metal-free catalysts, are more sustainable and cost-effective. Their porous structures and large surface areas facilitate mass and electron transport and boost the ORR kinetics. This mini-review will give a brief summary of recent development of POPs as electrocatalysts for the ORR. Some design principles, different POP structures, key factors for their ORR catalytic performance, and outlook of POP materials will be discussed.