To reveal variation of organic matter content in red paddy soil, Through a 27 years-located fertilization experiment in red paddy soil, the content and composi- tion of organic matter in paddy soil were studied in thi...To reveal variation of organic matter content in red paddy soil, Through a 27 years-located fertilization experiment in red paddy soil, the content and composi- tion of organic matter in paddy soil were studied in this paper. The result showed that: the dynamics of soil organic matter of the different fertilization treatments showed significant differences, in the premise of equal nutrient (nitrogen and phos- phorus and potassium), combining application of organic-inorganic was benefited for the accumulation of organic matter in paddy soil than without fertilizer treatment or chemical fertilizer treatment; the dynamics of soil humic acid, HA and FA of chemi- cal fertilizer only and Combining application of organic-inorganic treatments had basi- cally the same trend, But the contents of humic acid, HA and FA of combining ap- plication of organic-inorganic treatments had been higher than that without fertilizer and chemical fertilizer treatment. Moreover combining application of organic-inorganic treatments was benefited for improving the contents of HA and FA, but decreasing HA/FA ratio as an extension of time. Combining application of organic-inorganic was benefited for improving the contents ol readily oxidizable organic matter. And the contents of soil organic matter in long-term experiment and the contents of readily oxidizable O.M were highly significant positive correlation and the contents of soil total nitrogen, avail nitrogen and potassium were significant positive correlation; the contents of soil readily oxidizable O.M and the contents of soil total nitrogen, avail- able P and rice yield were significant positive correlation. Thereinto, the correlation (r=0.818 1 ) between the rice yield and soil readily oxidizable O.M was higher than the correlation (r=0.802 0) between the rice yield and soil organic matter. It showed the soil readily oxidized organic matter had greater contribution to the rice yield.展开更多
A new position group contribution model is proposed for the estimation of normal boiling data of organic compounds involving a carbon chain from C2 to C18.The characteristic of this method is the use of position distr...A new position group contribution model is proposed for the estimation of normal boiling data of organic compounds involving a carbon chain from C2 to C18.The characteristic of this method is the use of position distribution function.It could distinguish most of isomers that include cis-or trans-structure from organic compounds.Contributions for hydrocarbons and hydrocarbon derivatives containing oxygen,nitrogen,chlorine,bromine and sulfur,are given.Compared with the predictions,results made use of the most common existing group contribution methods,the overall average absolute difference of boiling point predictions of 417 organic compounds is 4.2 K;and the average absolute percent derivation is 1.0%,which is compared with 12.3 K and 3.2% with the method of Joback,12.1 K and 3.1% with the method of Constantinou-Gani.This new position contribution groups method is not only much more accurate but also has the advantages of simplicity and stability.展开更多
Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils a...Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils and aggregates at different slope positions under different land uses in a typical karst catchment of southwestern China. Our results show that the proportion of macro-aggregates and the SOC content of bulk soils and aggregates at different slope positions decreased from the upper to the lower slope. The SOC content generally increased with an increase in the mean weight diameter and proportion of macro-aggregates under different land uses. Our results indicate that macro-aggregates in forest and grassland soils make a greater contribution to both aggregate composition and SOC content than that in arable land soils. Therefore,converting farmland to forest or grassland can facilitate the accumulation of macro-aggregates as well as the storage of SOC.展开更多
Abstract: Stable carbon and nitrogen isotope analysis was used to identify the aquaculture-derived organic matter in the sediment in and around a coastal fish farm in China. Results showed that mean δ13C value in fi...Abstract: Stable carbon and nitrogen isotope analysis was used to identify the aquaculture-derived organic matter in the sediment in and around a coastal fish farm in China. Results showed that mean δ13C value in fish farm area (within 1 O0 m from the edge of cages) and control area (500 m from the edge of cages) was -17.72±1.29/oo and -12.73± 0.380/00, respectively. Mean δ15N value of fish farm area and control area was 6.44 4±0.2%0 and 5.61 4±0.2%0, respectively. The sediment in the fish farm area was characterized by high waste food (47.70%) and faeces (27.71%) ratio, as the distance from the fish cages increased, aquaculture-derived organic matter decreased expontially (y = 97.167e-0.0074x, R2= 0.8481). The spatial extent of waste dispersal extended to an area up to 400 m.展开更多
In order to investigate the variation in soil physical and chemical properties and nutrients in the mountainous areas in southern Ningxia, and to provide a theoretical basis for fertilization management in local farml...In order to investigate the variation in soil physical and chemical properties and nutrients in the mountainous areas in southern Ningxia, and to provide a theoretical basis for fertilization management in local farmland, the soil p H, total salt content,crop root length, root weight, soil organic matter, available nitrogen, total nitrogen, total phosphorous and total potassium in different fertilization treatments were measured from 2010 to 2016. Multiple comparisons of the data were performed using Duncan's new multiple range test. The results indicated that in the 0-20 cm soil layer, soil p H value and total salt content changed in different patterns, and varied greatly from 2010 to 2016(P<0.05). The changes of both root length and root weight of millet over time fitted S-shaped curves. The root length and root weight in the four fertilization treatments(Treatment 2 to Treatment5) increased faster than those in the control(Treatment 1). The soil organic matter content in all the five treatments gradually increased from 2010 to 2016. The content of alkaline hydrolyzable nitrogen in soil rapidly increased in the first two to three years of the experiment, followed by a slow increase or decrease in 2013, and then raised rapidly again from 2014 to 2016.The soil total nitrogen content varied significantly from 2010 to 2016. The total phosphorus content in soil changed in a different pattern from that of total nitrogen content. The seven-year field trails revealed that soil p H, total salt content, root length, root weight and soil nutrient all changed with the increase of fertilizer level, and that long-term fertilization is of significance for maintaining soil fertility, improving soil quality and reducing soil salinization.展开更多
Detecting/sensing targets underwater has very important applications in environmental study, civil engineering and national security. In this paper, an organic-film based triboelectric nanogenerator (TENG) has been ...Detecting/sensing targets underwater has very important applications in environmental study, civil engineering and national security. In this paper, an organic-film based triboelectric nanogenerator (TENG) has been successfully demonstrated for the first time as a self-powered and high sensitivity acoustic sensor to detect underwater targets at low frequencies around 100 Hz. This innovative, cost-effective, simple-design TENG consists of a thin-film-based Cu electrode and a polytetrafluoroethylene (PTFE) film with nanostructures on its surfaces. On the basis of the coupling effect between triboelectrification and electrostatic induction, the sensor generates electrical output signals in response to incident sound waves. Operating at a resonance frequency of 110 Hz, under an acoustic pressure of 144.2 dBspc, the maximum open-circuit voltage and short-circuit current of the generator can respectively reach 65 V and 32 ~A underwater. The directional dependence pattern has a bi-directional shape with a total response angle of 60~. Its sensitivity is higher than -185 dB in the frequency range from 30 Hz to 200 Hz. The highest sensitivity is -146 dB at resonance frequency. The three-dimensional coordinates of an acoustic source were identified by four TENGs, self-powered active sensors, and the location of the acoustic source was determined with an error about 0.2 m. This study not only expands the application fields of TENGs from the atmosphere to water, but also shows the TENG is a promising acoustic source locator in underwater environments.展开更多
Strong and rapid responses of soil microbial respiration to pulses,such as those from available soil organic matter(SOM)or water input from precipitation(especially in arid areas),are common.However,how soil microbes ...Strong and rapid responses of soil microbial respiration to pulses,such as those from available soil organic matter(SOM)or water input from precipitation(especially in arid areas),are common.However,how soil microbes utilize new SOM inputs and the effects that temperature may have on their activities are unclear owing to the limitation in the application of traditional isotopic techniques at minute scales.In the present study,we developed a system of measuring 12CO2 and δ^13C minutely and synchronously under controlled incubation temperatures,i.e.,for 48 h at 7,10,15,20,and 25℃,to explore the carbon utilization strategies of soil microbes.We measured the respiration rates of soil microbes in response to different carbon sources,i.e.,added glucose(Rg)and initial SOM(Rs),as well as the total respiration rate(Rt).All responses were rapid and characterized by unimodal curves.Furthermore,the characteristic values of these curves,such as the maximum of rate(R-max),the time required to achieve R-max,and the ratio of the duration of R-max to that of 1/2 R-max,were all dependent on incubation temperature.Interestingly,temperature greatly influenced the strategy that microorganisms employed to utilize different carbon sources.The effects of temperature on the intensity of the microbial respiratory response and the ratio of Rg/Rs are important for evaluating the effect of land-use changes or variations in seasonal temperature on SOM turnover and should be considered in ecological models in future studies.展开更多
基金Supported by National Key Technology R&D Program(2006BAD02A04)~~
文摘To reveal variation of organic matter content in red paddy soil, Through a 27 years-located fertilization experiment in red paddy soil, the content and composi- tion of organic matter in paddy soil were studied in this paper. The result showed that: the dynamics of soil organic matter of the different fertilization treatments showed significant differences, in the premise of equal nutrient (nitrogen and phos- phorus and potassium), combining application of organic-inorganic was benefited for the accumulation of organic matter in paddy soil than without fertilizer treatment or chemical fertilizer treatment; the dynamics of soil humic acid, HA and FA of chemi- cal fertilizer only and Combining application of organic-inorganic treatments had basi- cally the same trend, But the contents of humic acid, HA and FA of combining ap- plication of organic-inorganic treatments had been higher than that without fertilizer and chemical fertilizer treatment. Moreover combining application of organic-inorganic treatments was benefited for improving the contents of HA and FA, but decreasing HA/FA ratio as an extension of time. Combining application of organic-inorganic was benefited for improving the contents ol readily oxidizable organic matter. And the contents of soil organic matter in long-term experiment and the contents of readily oxidizable O.M were highly significant positive correlation and the contents of soil total nitrogen, avail nitrogen and potassium were significant positive correlation; the contents of soil readily oxidizable O.M and the contents of soil total nitrogen, avail- able P and rice yield were significant positive correlation. Thereinto, the correlation (r=0.818 1 ) between the rice yield and soil readily oxidizable O.M was higher than the correlation (r=0.802 0) between the rice yield and soil organic matter. It showed the soil readily oxidized organic matter had greater contribution to the rice yield.
文摘A new position group contribution model is proposed for the estimation of normal boiling data of organic compounds involving a carbon chain from C2 to C18.The characteristic of this method is the use of position distribution function.It could distinguish most of isomers that include cis-or trans-structure from organic compounds.Contributions for hydrocarbons and hydrocarbon derivatives containing oxygen,nitrogen,chlorine,bromine and sulfur,are given.Compared with the predictions,results made use of the most common existing group contribution methods,the overall average absolute difference of boiling point predictions of 417 organic compounds is 4.2 K;and the average absolute percent derivation is 1.0%,which is compared with 12.3 K and 3.2% with the method of Joback,12.1 K and 3.1% with the method of Constantinou-Gani.This new position contribution groups method is not only much more accurate but also has the advantages of simplicity and stability.
基金supported jointly by the National Natural Science Foundation of China(4132501041571130042)the State’s Key Project of Research and Development Plan of China(2016YFA0601002)
文摘Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils and aggregates at different slope positions under different land uses in a typical karst catchment of southwestern China. Our results show that the proportion of macro-aggregates and the SOC content of bulk soils and aggregates at different slope positions decreased from the upper to the lower slope. The SOC content generally increased with an increase in the mean weight diameter and proportion of macro-aggregates under different land uses. Our results indicate that macro-aggregates in forest and grassland soils make a greater contribution to both aggregate composition and SOC content than that in arable land soils. Therefore,converting farmland to forest or grassland can facilitate the accumulation of macro-aggregates as well as the storage of SOC.
文摘Abstract: Stable carbon and nitrogen isotope analysis was used to identify the aquaculture-derived organic matter in the sediment in and around a coastal fish farm in China. Results showed that mean δ13C value in fish farm area (within 1 O0 m from the edge of cages) and control area (500 m from the edge of cages) was -17.72±1.29/oo and -12.73± 0.380/00, respectively. Mean δ15N value of fish farm area and control area was 6.44 4±0.2%0 and 5.61 4±0.2%0, respectively. The sediment in the fish farm area was characterized by high waste food (47.70%) and faeces (27.71%) ratio, as the distance from the fish cages increased, aquaculture-derived organic matter decreased expontially (y = 97.167e-0.0074x, R2= 0.8481). The spatial extent of waste dispersal extended to an area up to 400 m.
基金Supported by National Grain and Sorghum Industry Technical System(CARS-06-13.5-A18)Program for the Integrated Development of the Primary,Secondary and Tertiary Sectors in Rural Area of Ningxia(YES-06-08)
文摘In order to investigate the variation in soil physical and chemical properties and nutrients in the mountainous areas in southern Ningxia, and to provide a theoretical basis for fertilization management in local farmland, the soil p H, total salt content,crop root length, root weight, soil organic matter, available nitrogen, total nitrogen, total phosphorous and total potassium in different fertilization treatments were measured from 2010 to 2016. Multiple comparisons of the data were performed using Duncan's new multiple range test. The results indicated that in the 0-20 cm soil layer, soil p H value and total salt content changed in different patterns, and varied greatly from 2010 to 2016(P<0.05). The changes of both root length and root weight of millet over time fitted S-shaped curves. The root length and root weight in the four fertilization treatments(Treatment 2 to Treatment5) increased faster than those in the control(Treatment 1). The soil organic matter content in all the five treatments gradually increased from 2010 to 2016. The content of alkaline hydrolyzable nitrogen in soil rapidly increased in the first two to three years of the experiment, followed by a slow increase or decrease in 2013, and then raised rapidly again from 2014 to 2016.The soil total nitrogen content varied significantly from 2010 to 2016. The total phosphorus content in soil changed in a different pattern from that of total nitrogen content. The seven-year field trails revealed that soil p H, total salt content, root length, root weight and soil nutrient all changed with the increase of fertilizer level, and that long-term fertilization is of significance for maintaining soil fertility, improving soil quality and reducing soil salinization.
文摘Detecting/sensing targets underwater has very important applications in environmental study, civil engineering and national security. In this paper, an organic-film based triboelectric nanogenerator (TENG) has been successfully demonstrated for the first time as a self-powered and high sensitivity acoustic sensor to detect underwater targets at low frequencies around 100 Hz. This innovative, cost-effective, simple-design TENG consists of a thin-film-based Cu electrode and a polytetrafluoroethylene (PTFE) film with nanostructures on its surfaces. On the basis of the coupling effect between triboelectrification and electrostatic induction, the sensor generates electrical output signals in response to incident sound waves. Operating at a resonance frequency of 110 Hz, under an acoustic pressure of 144.2 dBspc, the maximum open-circuit voltage and short-circuit current of the generator can respectively reach 65 V and 32 ~A underwater. The directional dependence pattern has a bi-directional shape with a total response angle of 60~. Its sensitivity is higher than -185 dB in the frequency range from 30 Hz to 200 Hz. The highest sensitivity is -146 dB at resonance frequency. The three-dimensional coordinates of an acoustic source were identified by four TENGs, self-powered active sensors, and the location of the acoustic source was determined with an error about 0.2 m. This study not only expands the application fields of TENGs from the atmosphere to water, but also shows the TENG is a promising acoustic source locator in underwater environments.
基金National Key Research and Development Program of China(2016YFA0600104,2016YFC0500102)Natural Science Foundation of China(31770655,41671045)Program of Youth Innovation Research Team Project(LENOM2016Q0005)
文摘Strong and rapid responses of soil microbial respiration to pulses,such as those from available soil organic matter(SOM)or water input from precipitation(especially in arid areas),are common.However,how soil microbes utilize new SOM inputs and the effects that temperature may have on their activities are unclear owing to the limitation in the application of traditional isotopic techniques at minute scales.In the present study,we developed a system of measuring 12CO2 and δ^13C minutely and synchronously under controlled incubation temperatures,i.e.,for 48 h at 7,10,15,20,and 25℃,to explore the carbon utilization strategies of soil microbes.We measured the respiration rates of soil microbes in response to different carbon sources,i.e.,added glucose(Rg)and initial SOM(Rs),as well as the total respiration rate(Rt).All responses were rapid and characterized by unimodal curves.Furthermore,the characteristic values of these curves,such as the maximum of rate(R-max),the time required to achieve R-max,and the ratio of the duration of R-max to that of 1/2 R-max,were all dependent on incubation temperature.Interestingly,temperature greatly influenced the strategy that microorganisms employed to utilize different carbon sources.The effects of temperature on the intensity of the microbial respiratory response and the ratio of Rg/Rs are important for evaluating the effect of land-use changes or variations in seasonal temperature on SOM turnover and should be considered in ecological models in future studies.