Utilization of carbon dioxide(CO_(2))has become a crucial and anticipated solution to address environmental and ecological issues.Enzymes such as carbonic anhydrase(CA)can efficiently convert CO_(2) into various platf...Utilization of carbon dioxide(CO_(2))has become a crucial and anticipated solution to address environmental and ecological issues.Enzymes such as carbonic anhydrase(CA)can efficiently convert CO_(2) into various platform chemicals under ambient conditions,which offers a promising way for CO_(2) utilization.Herein,we constructed a Pickering interfacial biocatalytic system(PIBS)stabilized by CA‐embedded MOFs(ZIF‐8 and ZIF‐L)for CO_(2) mineralization.Through structure engineering of MOFs and incorporation of Pickering emulsion,the internal and external diffusion processes of CO_(2) during the enzymatic mineralization were greatly intensified.When CO_(2) was ventilated at a flow rate of 50 mL min^(–1) for 1 h,the pH value of PIBS dropped from~8.00 to~6.50,while the average pH value of free system only dropped to~7.15,indicating that the initial reaction rate of CO_(2) mineralization of PIBS is nearly twice that of the free system.After the 8^(th) cycle reaction,PIBS can still produce more than 9.8 mg of CaCO_(3) in 5 min,realizing efficient and continuous mineralization of CO_(2).展开更多
The primary objective of this study was to investigate the impact of observation scale on the estimation of soil thermal properties.Transients are usually filtered out and ignored when classical Fourier approaches are...The primary objective of this study was to investigate the impact of observation scale on the estimation of soil thermal properties.Transients are usually filtered out and ignored when classical Fourier approaches are used to deconstruct and model temperature time series.It was hypothesized that examination of such transients may be more important in identifying and quantifying short-term perturbations in internal soil heat transfer induced by agronomic disturbances. Data-logged temperatures were collected at 10-minute intervals from thermistor probes installed at 10 and 25 cm depths in isolated areas of two grassed plots.One plot(6T)had been treated twice with 6 Mg ha^(-1)composted turkey litter as received.The other plot(NPK)was fertilized at the same time with NPK fertilizer.Various methods were used to analyze the series to obtain apparent soil thermal diffusivity(D-value)at various time scales.Results supported the hypothesis that short-term differences in internal soil heat transfer between the 6T and NPK plots were more manifest and effectively captured by estimated D-values calculated from the monthly and daily partial series.The 6T plot had higher soil organic matter content than the NPK plot and had lower apparent soil thermal diffusivity.Diurnal soil temperature amplitudes, required to calculate the mean D-values from partial series,were more effectively obtained using a temperature change rate method.The more commonly used Fourier analysis tended to be effective for this purpose when the partial series reasonably presented well-defined diurnal patterns of increasing and decreasing temperatures.展开更多
The supply of cadmium from soil to plant roots mainly depends on the diffusion process. This work was conducted tostudy the effect of some soil properties on cadmium diffusion coefficient (D) in soil. Measurements we...The supply of cadmium from soil to plant roots mainly depends on the diffusion process. This work was conducted tostudy the effect of some soil properties on cadmium diffusion coefficient (D) in soil. Measurements were made using the Shofield and Graham-Bryce's isotopic labelling method. Cadmium diffusion coefficients varied from 10 ̄(-7) to 10 ̄(-9) cm ̄2s ̄(-1),Higher values were observed in acid sandy soils and lower values in calcareous clay soils. Liming an acid soil resulted in a sub-stantial decrease of D. Addition of cadmium as nitrate salt generally increased D, while addition of sewage sludge and organ-ic matter resulted in a significant decrease of cadmium diffusion. The rhizospheric activity also induced a moderate reduction in D. The relationships between D 10 ̄(-9)cm ̄2s ̄(-1)) on the one hand and soil PH, moisture (Mc, g kg ̄(-1)), organic matter (OM, gkg ̄1 ), clay (Cy, g kg ̄(-1)) and cadmium content (Cd, mg kg ̄(-1)) on the other were obtained by the multigle regression:D=182. 1-29.g1 pH+0.210Mc-0.303OM+0.011Cy+1.64Cd (R ̄2=0.859,n=22 ).展开更多
A mass transfer model for devolatilization process of highly viscous media in rotating packed bed(RPB) was developed based on penetration theory and mass conservation.Before establishing the model,some mass transfer e...A mass transfer model for devolatilization process of highly viscous media in rotating packed bed(RPB) was developed based on penetration theory and mass conservation.Before establishing the model,some mass transfer experiments of thin film were conducted in a designed diffusion cell including vacuum and feeding system. In this study,acetone was used as the volatile organic compound(VOC) and syrup as the highly viscous media.The thickness of thin film was changed by using different liquid distributor.It was found that bubbling played an important role in the devolatilization.The correlation of diffusion coefficient of acetone in highly viscous dilute solution was proposed.The relative error between predicted and experimental data was within the range of ± 30% for diffusion coefficient of acetone in syrup.A comparison of experimental data of RPB with model indicated that the relative error was within ± 30% for efficiency of acetone removal.展开更多
Nanofiltration separation has become a popular technique for removing largeorganic molecules and inorganic substances from water. It is achieved by a combination of threemechanisms: electrostatic repulsion, sieving an...Nanofiltration separation has become a popular technique for removing largeorganic molecules and inorganic substances from water. It is achieved by a combination of threemechanisms: electrostatic repulsion, sieving and diffusion. In the present work, a model based onirreversible thermodynamics is extended and used to estimate rejection of inorganic salts andorganic substances. Binary systems are modeled, where the feed contains an ion that is much lesspermeable to the membrane as compared with the other ion. The two model parameters are estimated byfitting the model to the experimental data. Variation of these parameters with the composition ofthe feed is described by an empirical correlation. This work attempts to describe transport throughthe nanofiltration membranes by a simple model.展开更多
In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evo...In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+ 1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.展开更多
Rhizosphere drives plant uptake of sparingly soluble soil zinc(Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes(Sehar-06 and Vatan),Zn fracti...Rhizosphere drives plant uptake of sparingly soluble soil zinc(Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes(Sehar-06 and Vatan),Zn fractions in 10 different calcareous soils from Punjab,Pakistan,and release of different soil Zn fractions by organic acids.The two genotypes differed significantly in biomass production and Zn accumulation under deficient and optimum Zn levels in nutrient solution.At a deficient Zn level,Sehar-06 released more maleic acid in the rhizosphere than Vatan.Ten soils used in the present study had very different physicochemical properties;their total Zn and Zn distribution among different fractions varied significantly.Zinc release behaviour was determined by extracting the soils with 0.005 mol L-1 citric acid or maleic acid.The parabolic diffusion model best described Zn release as a function of time.Parabolic diffusion model fitting indicated more maleic acid-driven than citric acid-driven soil Zn mobility from different fractions.Cumulative Zn release in six consecutive extractions during 24 h ranged from 1.85 to 13.58 mg kg-1 using maleic acid and from 0.37 to 11.84 mg kg-1 using citric acid.In the selected calcareous soils,the results of stepwise linear regression indicated significant release of Fe-Mn oxide-bounded soil Zn by maleic acid and its availability to the Zn-effcient genotype.Hence,release of maleic acid by plants roots played an important role in phytoavailability of Zn from calcareous soils.展开更多
文摘Utilization of carbon dioxide(CO_(2))has become a crucial and anticipated solution to address environmental and ecological issues.Enzymes such as carbonic anhydrase(CA)can efficiently convert CO_(2) into various platform chemicals under ambient conditions,which offers a promising way for CO_(2) utilization.Herein,we constructed a Pickering interfacial biocatalytic system(PIBS)stabilized by CA‐embedded MOFs(ZIF‐8 and ZIF‐L)for CO_(2) mineralization.Through structure engineering of MOFs and incorporation of Pickering emulsion,the internal and external diffusion processes of CO_(2) during the enzymatic mineralization were greatly intensified.When CO_(2) was ventilated at a flow rate of 50 mL min^(–1) for 1 h,the pH value of PIBS dropped from~8.00 to~6.50,while the average pH value of free system only dropped to~7.15,indicating that the initial reaction rate of CO_(2) mineralization of PIBS is nearly twice that of the free system.After the 8^(th) cycle reaction,PIBS can still produce more than 9.8 mg of CaCO_(3) in 5 min,realizing efficient and continuous mineralization of CO_(2).
文摘The primary objective of this study was to investigate the impact of observation scale on the estimation of soil thermal properties.Transients are usually filtered out and ignored when classical Fourier approaches are used to deconstruct and model temperature time series.It was hypothesized that examination of such transients may be more important in identifying and quantifying short-term perturbations in internal soil heat transfer induced by agronomic disturbances. Data-logged temperatures were collected at 10-minute intervals from thermistor probes installed at 10 and 25 cm depths in isolated areas of two grassed plots.One plot(6T)had been treated twice with 6 Mg ha^(-1)composted turkey litter as received.The other plot(NPK)was fertilized at the same time with NPK fertilizer.Various methods were used to analyze the series to obtain apparent soil thermal diffusivity(D-value)at various time scales.Results supported the hypothesis that short-term differences in internal soil heat transfer between the 6T and NPK plots were more manifest and effectively captured by estimated D-values calculated from the monthly and daily partial series.The 6T plot had higher soil organic matter content than the NPK plot and had lower apparent soil thermal diffusivity.Diurnal soil temperature amplitudes, required to calculate the mean D-values from partial series,were more effectively obtained using a temperature change rate method.The more commonly used Fourier analysis tended to be effective for this purpose when the partial series reasonably presented well-defined diurnal patterns of increasing and decreasing temperatures.
文摘The supply of cadmium from soil to plant roots mainly depends on the diffusion process. This work was conducted tostudy the effect of some soil properties on cadmium diffusion coefficient (D) in soil. Measurements were made using the Shofield and Graham-Bryce's isotopic labelling method. Cadmium diffusion coefficients varied from 10 ̄(-7) to 10 ̄(-9) cm ̄2s ̄(-1),Higher values were observed in acid sandy soils and lower values in calcareous clay soils. Liming an acid soil resulted in a sub-stantial decrease of D. Addition of cadmium as nitrate salt generally increased D, while addition of sewage sludge and organ-ic matter resulted in a significant decrease of cadmium diffusion. The rhizospheric activity also induced a moderate reduction in D. The relationships between D 10 ̄(-9)cm ̄2s ̄(-1)) on the one hand and soil PH, moisture (Mc, g kg ̄(-1)), organic matter (OM, gkg ̄1 ), clay (Cy, g kg ̄(-1)) and cadmium content (Cd, mg kg ̄(-1)) on the other were obtained by the multigle regression:D=182. 1-29.g1 pH+0.210Mc-0.303OM+0.011Cy+1.64Cd (R ̄2=0.859,n=22 ).
基金Supported by the National Natural Science Foundation of China(20821004 20990221) the National High Technology Research and Development Program of China(2006AA030202)+1 种基金 the Program for New Century Excellent Talents in University of China(NCET-07-0053) the National Basic Research Program of China(2009CB219903)
文摘A mass transfer model for devolatilization process of highly viscous media in rotating packed bed(RPB) was developed based on penetration theory and mass conservation.Before establishing the model,some mass transfer experiments of thin film were conducted in a designed diffusion cell including vacuum and feeding system. In this study,acetone was used as the volatile organic compound(VOC) and syrup as the highly viscous media.The thickness of thin film was changed by using different liquid distributor.It was found that bubbling played an important role in the devolatilization.The correlation of diffusion coefficient of acetone in highly viscous dilute solution was proposed.The relative error between predicted and experimental data was within the range of ± 30% for diffusion coefficient of acetone in syrup.A comparison of experimental data of RPB with model indicated that the relative error was within ± 30% for efficiency of acetone removal.
文摘Nanofiltration separation has become a popular technique for removing largeorganic molecules and inorganic substances from water. It is achieved by a combination of threemechanisms: electrostatic repulsion, sieving and diffusion. In the present work, a model based onirreversible thermodynamics is extended and used to estimate rejection of inorganic salts andorganic substances. Binary systems are modeled, where the feed contains an ion that is much lesspermeable to the membrane as compared with the other ion. The two model parameters are estimated byfitting the model to the experimental data. Variation of these parameters with the composition ofthe feed is described by an empirical correlation. This work attempts to describe transport throughthe nanofiltration membranes by a simple model.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+ 1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.
基金Supported by the Indigenous Ph.D. Fellowship Programme of the Higher Education Commission of Pakistan
文摘Rhizosphere drives plant uptake of sparingly soluble soil zinc(Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes(Sehar-06 and Vatan),Zn fractions in 10 different calcareous soils from Punjab,Pakistan,and release of different soil Zn fractions by organic acids.The two genotypes differed significantly in biomass production and Zn accumulation under deficient and optimum Zn levels in nutrient solution.At a deficient Zn level,Sehar-06 released more maleic acid in the rhizosphere than Vatan.Ten soils used in the present study had very different physicochemical properties;their total Zn and Zn distribution among different fractions varied significantly.Zinc release behaviour was determined by extracting the soils with 0.005 mol L-1 citric acid or maleic acid.The parabolic diffusion model best described Zn release as a function of time.Parabolic diffusion model fitting indicated more maleic acid-driven than citric acid-driven soil Zn mobility from different fractions.Cumulative Zn release in six consecutive extractions during 24 h ranged from 1.85 to 13.58 mg kg-1 using maleic acid and from 0.37 to 11.84 mg kg-1 using citric acid.In the selected calcareous soils,the results of stepwise linear regression indicated significant release of Fe-Mn oxide-bounded soil Zn by maleic acid and its availability to the Zn-effcient genotype.Hence,release of maleic acid by plants roots played an important role in phytoavailability of Zn from calcareous soils.