Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use...Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.展开更多
Objective: To compare the volatile constituents in mugwort leaves produced in Qichun, Hubei Province and Nanyang, Henan Province. Methods: The volatile constituents were extracted using headspace heating and analyze...Objective: To compare the volatile constituents in mugwort leaves produced in Qichun, Hubei Province and Nanyang, Henan Province. Methods: The volatile constituents were extracted using headspace heating and analyzed using gas chromatography-mass spectrometry (GC-MS). Then a qualitative analysis was made according to the standard database provided by the National Institute of Standards and Technology (NIST) and the relative contents of each constituent were calculated using the peak area normalization method. Results: A total of 59 compounds were identified from the mugwort leaves from Qichun and 51 compounds were identified from the mugwort leaves from Nanyang. These mainly include monoterpenoids, sesquiterpenoids, C^HvOz and other compounds involving the aldehyde, ketone, alkane and benzene. The mugwort leaves from Qichun and Nanyang share 32 common volatile constituents. The chromatographic peak area of identified compounds accounting for 96.38% of GC-MS total chromatographic peak areain Qichun mugwort leaves, versus 95.54% of that in Nanyang mugwort leaves. Conclusion: The headspace heating extraction combined with GC-MS technology can evidently display similarities and differences of volatile constituents in mugwort leaves produced in different areas and thus provide scientific basis for the quality and screening of mugwort leaves.展开更多
Ammonia(NH3) plays vital roles in new particle formation and atmospheric chemistry. Although previous studies have revealed that it also influences the formation of secondary organic aerosols(SOA) from ozonolysis of b...Ammonia(NH3) plays vital roles in new particle formation and atmospheric chemistry. Although previous studies have revealed that it also influences the formation of secondary organic aerosols(SOA) from ozonolysis of biogenic and anthropogenic volatile organic compounds(VOCs), the influence of NH3 on particle formation from complex mixtures such as vehicle exhausts is still poorly understood. Here we directly introduced gasoline vehicles exhausts(GVE) into a smog chamber with NH3 absorbed by denuders to examine the role of NH3 in particle formation from GVE. We found that removing NH3 from GVE would greatly suppress the formation and growth of particles. Adding NH3 into the reactor after 3 h photo-oxidation of GVE, the particle number concentration and mass concentrations jumped explosively to much higher levels, indicating that the numbers and mass of particles might be enhanced when aged vehicle exhausts are transported to rural areas and mixed with NH3-rich plumes. We also found that the presence of NH3 had no significant influence on SOA formation from GVE. Very similar oxygen to carbon(O:C) and hydrogen to carbon(H:C) ratios resolved by aerosol mass spectrometer with and without NH3 indicated that the presence of NH3 also had no impact on the average carbon oxidation state of SOA from GVE.展开更多
The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the re...The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the resultant potential applications for the degradation of volatile organic compounds(VOCs). The structure-activity relationships have been well-studied and used to facilitate design of the structure and composition of highly active catalysts. Recently, non-noble metal oxides with porous structures have been used as catalysts for deep oxidation of VOCs, such as aromatic hydrocarbons, aliphatic compounds, aldehydes, and alcohols, with comparable activities to their noble metal counterparts. This review summarizes the growing literature regarding the use of porous metal oxides for the catalytic removal of VOCs, with emphasis on design of the composition and structure and typical synthetic technologies.展开更多
Porous silicon microcavities (PSM) optical crystals consisting of a Fabry-Perot microcavity embedded between two distributed Bragg reflectors have been fabricated by electrochemical etching. Scanning electron microsco...Porous silicon microcavities (PSM) optical crystals consisting of a Fabry-Perot microcavity embedded between two distributed Bragg reflectors have been fabricated by electrochemical etching. Scanning electron microscopy (SEM) clearly depicted their physical sandwich construction. The optical feature of the PSM structure was tuned by varying the anodization parameters. Through proper thermal oxidation and surface chemical modifications, the resulting structures were employed as optical sensors for the detection of environmental pollutants including volatile organic vapors (i.e. acetonitrile, toluene, cyclohexane, chloroform, acetone and ethanol) and interior decoration gases (i.e. toluene, ammonia and formaldehyde). Fourier transform infrared spectroscopy (FTIR) spectra confirmed the effective thermal annealing and surface modification chemistry, and the sensing process was accompanied by recording the modified structures' optical responses when exposed to target analytes. The PSM optical sensors showed good stability, sensitivity and selectivity, implying promising applications in gas sensing and en- vironmental monitoring.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(2015XZZX004-04)Zhejiang Provincial Natural Science Foundation(LR15B030001)~~
文摘Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.
基金supported by National Basic Research Program of China(973 Program,No.2015CB554506)~~
文摘Objective: To compare the volatile constituents in mugwort leaves produced in Qichun, Hubei Province and Nanyang, Henan Province. Methods: The volatile constituents were extracted using headspace heating and analyzed using gas chromatography-mass spectrometry (GC-MS). Then a qualitative analysis was made according to the standard database provided by the National Institute of Standards and Technology (NIST) and the relative contents of each constituent were calculated using the peak area normalization method. Results: A total of 59 compounds were identified from the mugwort leaves from Qichun and 51 compounds were identified from the mugwort leaves from Nanyang. These mainly include monoterpenoids, sesquiterpenoids, C^HvOz and other compounds involving the aldehyde, ketone, alkane and benzene. The mugwort leaves from Qichun and Nanyang share 32 common volatile constituents. The chromatographic peak area of identified compounds accounting for 96.38% of GC-MS total chromatographic peak areain Qichun mugwort leaves, versus 95.54% of that in Nanyang mugwort leaves. Conclusion: The headspace heating extraction combined with GC-MS technology can evidently display similarities and differences of volatile constituents in mugwort leaves produced in different areas and thus provide scientific basis for the quality and screening of mugwort leaves.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB05010200)the National Natural Science Foundation of China(41025012/41121063)+1 种基金NSFC-Guangdong Joint Funds(U0833003)the Guangzhou Institute of Geochemistry(GIGCAS 135 Project Y234161001)
文摘Ammonia(NH3) plays vital roles in new particle formation and atmospheric chemistry. Although previous studies have revealed that it also influences the formation of secondary organic aerosols(SOA) from ozonolysis of biogenic and anthropogenic volatile organic compounds(VOCs), the influence of NH3 on particle formation from complex mixtures such as vehicle exhausts is still poorly understood. Here we directly introduced gasoline vehicles exhausts(GVE) into a smog chamber with NH3 absorbed by denuders to examine the role of NH3 in particle formation from GVE. We found that removing NH3 from GVE would greatly suppress the formation and growth of particles. Adding NH3 into the reactor after 3 h photo-oxidation of GVE, the particle number concentration and mass concentrations jumped explosively to much higher levels, indicating that the numbers and mass of particles might be enhanced when aged vehicle exhausts are transported to rural areas and mixed with NH3-rich plumes. We also found that the presence of NH3 had no significant influence on SOA formation from GVE. Very similar oxygen to carbon(O:C) and hydrogen to carbon(H:C) ratios resolved by aerosol mass spectrometer with and without NH3 indicated that the presence of NH3 also had no impact on the average carbon oxidation state of SOA from GVE.
基金supported by the National High Technology Research and Development Program of China(2012AA062702)the strategic project of the Chinese Academy of Sciences(XDB05050000)
文摘The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the resultant potential applications for the degradation of volatile organic compounds(VOCs). The structure-activity relationships have been well-studied and used to facilitate design of the structure and composition of highly active catalysts. Recently, non-noble metal oxides with porous structures have been used as catalysts for deep oxidation of VOCs, such as aromatic hydrocarbons, aliphatic compounds, aldehydes, and alcohols, with comparable activities to their noble metal counterparts. This review summarizes the growing literature regarding the use of porous metal oxides for the catalytic removal of VOCs, with emphasis on design of the composition and structure and typical synthetic technologies.
基金supported by the National Natural Science Foundation of China (20875062 & 81071249)Shenzhen Science and Technology Pro-jects (SY200806300225A)the "Hundred Talents Program" of Chinese Academy of Sciences
文摘Porous silicon microcavities (PSM) optical crystals consisting of a Fabry-Perot microcavity embedded between two distributed Bragg reflectors have been fabricated by electrochemical etching. Scanning electron microscopy (SEM) clearly depicted their physical sandwich construction. The optical feature of the PSM structure was tuned by varying the anodization parameters. Through proper thermal oxidation and surface chemical modifications, the resulting structures were employed as optical sensors for the detection of environmental pollutants including volatile organic vapors (i.e. acetonitrile, toluene, cyclohexane, chloroform, acetone and ethanol) and interior decoration gases (i.e. toluene, ammonia and formaldehyde). Fourier transform infrared spectroscopy (FTIR) spectra confirmed the effective thermal annealing and surface modification chemistry, and the sensing process was accompanied by recording the modified structures' optical responses when exposed to target analytes. The PSM optical sensors showed good stability, sensitivity and selectivity, implying promising applications in gas sensing and en- vironmental monitoring.