Micromorphology of solonetz species with special attention to natric horizon was studied in microcatenas at the Dzhanybek Research Station (northwestern Caspian Lowland). The solonetzic (natric) horizon is easily iden...Micromorphology of solonetz species with special attention to natric horizon was studied in microcatenas at the Dzhanybek Research Station (northwestern Caspian Lowland). The solonetzic (natric) horizon is easily identified, and it occurs at varying depths, which are the criteria for subdividing solonetzes into 4 species, namely, crusty, shallow, medium and deep. In this sequence, the depth of humus-accumulative horizons increases, and the upper boundary of salinity manifestations goes down. The following micromorphological features are assumed as typical for natric horizons: angular blocky microstructures with partially accommodated aggregates having sharp boundaries and narrow plane-like packing voids; b-fabric speckled in the aggregates' centers and monostriated at their peripheries merging into stress coatings; very few interpedal voids; organo-clay coatings; humusenriched infillings; no calcite and gypsum pedofeatures. A complete set of "natric" features was found only in the crusty solonetz; the shallow solonetz lacks only illuviation coatings, while the medium and deep species have several modifications of fabric elements: blocky aggregates have a rounded shape and are penetrated by biogenic channels favoring their further biogenic reworking; plant residues became more abundant and diverse, and blackened tissues occur; illuviation clay coatings evolved into papules; stress coatings gave birth to striated b- fabrics, thus maintaining a high plasma orientation. The thin sections of natric horizons made 50 and 20 years ago were examined to study the influence of environmental changes (increase in precipitation and rise of ground water table) on micropedofeatures. The following processes took place: (i) in the topsoil: humus accumulation and biogenic structurization; (ii) in the natric horizon-re-arrangement of clay coatings into micromass b-fabrics; and (iii) in the lower part of the natric horizon-development of pseudosand fabric, calcite and gypsum formation. The trends revealed are in good agreement with the environmental events.展开更多
Carbon-enriched lignocelluloses are regarded as the perfect alternative for nonrenewable fossil fuel, and have a great potential to alleviate the increasing energy crisis and climate change. However, the tightly coval...Carbon-enriched lignocelluloses are regarded as the perfect alternative for nonrenewable fossil fuel, and have a great potential to alleviate the increasing energy crisis and climate change. However, the tightly covalent structure and strong intra and in- ter-molecular hydrogen bonding in lignoceUulose make it high recalcitrance to transformation due to the poor solubility in wa- ter or common organic solvents. Dissolution and transformation of lignocellulose and its constituents in ionic liquids have therefore attracted much attention recently due to the tunable physical-chemical properties. Here, ionic liquids with excellent dissolving capability for biomass and its ingredients were examined. The technologies for lignocellulose biorefining in the presence of ionic liquid solvents or catalysts were also summarized. Some pertinent suggestions for the future catalytic conver- sion and unitization of this sustained carbon-rich resource are proposed.展开更多
基金supported by the Russian Foundation for Basic Studies (project 08-04-01333)
文摘Micromorphology of solonetz species with special attention to natric horizon was studied in microcatenas at the Dzhanybek Research Station (northwestern Caspian Lowland). The solonetzic (natric) horizon is easily identified, and it occurs at varying depths, which are the criteria for subdividing solonetzes into 4 species, namely, crusty, shallow, medium and deep. In this sequence, the depth of humus-accumulative horizons increases, and the upper boundary of salinity manifestations goes down. The following micromorphological features are assumed as typical for natric horizons: angular blocky microstructures with partially accommodated aggregates having sharp boundaries and narrow plane-like packing voids; b-fabric speckled in the aggregates' centers and monostriated at their peripheries merging into stress coatings; very few interpedal voids; organo-clay coatings; humusenriched infillings; no calcite and gypsum pedofeatures. A complete set of "natric" features was found only in the crusty solonetz; the shallow solonetz lacks only illuviation coatings, while the medium and deep species have several modifications of fabric elements: blocky aggregates have a rounded shape and are penetrated by biogenic channels favoring their further biogenic reworking; plant residues became more abundant and diverse, and blackened tissues occur; illuviation clay coatings evolved into papules; stress coatings gave birth to striated b- fabrics, thus maintaining a high plasma orientation. The thin sections of natric horizons made 50 and 20 years ago were examined to study the influence of environmental changes (increase in precipitation and rise of ground water table) on micropedofeatures. The following processes took place: (i) in the topsoil: humus accumulation and biogenic structurization; (ii) in the natric horizon-re-arrangement of clay coatings into micromass b-fabrics; and (iii) in the lower part of the natric horizon-development of pseudosand fabric, calcite and gypsum formation. The trends revealed are in good agreement with the environmental events.
基金financial support of the National Natural Science Foundation of China (20876055, 21076085)the Natural Science Foundation of Guangdong Province (S2011020001472)the Fundamental Research Funds for the Central Universities, SCUT
文摘Carbon-enriched lignocelluloses are regarded as the perfect alternative for nonrenewable fossil fuel, and have a great potential to alleviate the increasing energy crisis and climate change. However, the tightly covalent structure and strong intra and in- ter-molecular hydrogen bonding in lignoceUulose make it high recalcitrance to transformation due to the poor solubility in wa- ter or common organic solvents. Dissolution and transformation of lignocellulose and its constituents in ionic liquids have therefore attracted much attention recently due to the tunable physical-chemical properties. Here, ionic liquids with excellent dissolving capability for biomass and its ingredients were examined. The technologies for lignocellulose biorefining in the presence of ionic liquid solvents or catalysts were also summarized. Some pertinent suggestions for the future catalytic conver- sion and unitization of this sustained carbon-rich resource are proposed.