Recent experiments report the rotation of FA(FA=HC[NH2]2+)cations significantly influence the excited-state lifetime of FAPbI3.However,the underlying mechanism remains unclear.Using ab initio nonadiabatic(NA)molecular...Recent experiments report the rotation of FA(FA=HC[NH2]2+)cations significantly influence the excited-state lifetime of FAPbI3.However,the underlying mechanism remains unclear.Using ab initio nonadiabatic(NA)molecular dynamics combined with time-domain density functional simulations,we have demonstrated that reorientation of partial FA cations significantly inhibits nonradiative electron-hole recombination with respect to the pristine FAPbI3 due to the decreased NA coupling by localizing electron and hole in different positions and the suppressed atomic motions.Slow nuclear motions simultaneously increase the decoherence time,which is overcome by the reduced NA coupling,extending electron-hole recombination time scales to several nanoseconds and being about 3.9 times longer than that in pristine FAPbI3,which occurs within sub-nanosecond and agrees with experiment.Our study established the mechanism for the experimentally reported prolonged excited-state lifetime,providing a rational strategy for design of high performance of perovskite solar cells and optoelectronic devices.展开更多
Aromatic bromides are important chemicals in nature and chemical industries.However,their tra‐ditional synthesis routes suffer from low atomic economy and pollutant formation.Herein,we show that organic-inorganic hyb...Aromatic bromides are important chemicals in nature and chemical industries.However,their tra‐ditional synthesis routes suffer from low atomic economy and pollutant formation.Herein,we show that organic-inorganic hybrid perovskite methylammonium lead bromide(MAPbBr_(3))nanocrystals stabilized in aqueous HBr solution can achieve simultaneous aromatic bromination and hydrogen evolution using HBr as the bromine source under visible light irradiation.By hybridizing MAPbBr_(3) with Pt/Ta_(2)O_(5) and poly(3,4‐ethylenedioxythiophene)polystyrene sulfonate as electron‐and hole‐transporting motifs,aromatic bromides were achieved from aromatic compounds with high yield(up to 99%)and selectivity(up to 99%)with the addition of N,N‐dimethylformamide or its analogs.The mechanistic studies revealed that the bromination proceeds via an electrophilic attack pathway and that HOBr may be the key intermediate in the bromination reaction.展开更多
基金supported by the National Natural Science Foundation of China(No.21573022 and No.51861135101)the Recruitment Program of Global Youth Experts of Chinathe Beijing Normal University Startup。
文摘Recent experiments report the rotation of FA(FA=HC[NH2]2+)cations significantly influence the excited-state lifetime of FAPbI3.However,the underlying mechanism remains unclear.Using ab initio nonadiabatic(NA)molecular dynamics combined with time-domain density functional simulations,we have demonstrated that reorientation of partial FA cations significantly inhibits nonradiative electron-hole recombination with respect to the pristine FAPbI3 due to the decreased NA coupling by localizing electron and hole in different positions and the suppressed atomic motions.Slow nuclear motions simultaneously increase the decoherence time,which is overcome by the reduced NA coupling,extending electron-hole recombination time scales to several nanoseconds and being about 3.9 times longer than that in pristine FAPbI3,which occurs within sub-nanosecond and agrees with experiment.Our study established the mechanism for the experimentally reported prolonged excited-state lifetime,providing a rational strategy for design of high performance of perovskite solar cells and optoelectronic devices.
文摘Aromatic bromides are important chemicals in nature and chemical industries.However,their tra‐ditional synthesis routes suffer from low atomic economy and pollutant formation.Herein,we show that organic-inorganic hybrid perovskite methylammonium lead bromide(MAPbBr_(3))nanocrystals stabilized in aqueous HBr solution can achieve simultaneous aromatic bromination and hydrogen evolution using HBr as the bromine source under visible light irradiation.By hybridizing MAPbBr_(3) with Pt/Ta_(2)O_(5) and poly(3,4‐ethylenedioxythiophene)polystyrene sulfonate as electron‐and hole‐transporting motifs,aromatic bromides were achieved from aromatic compounds with high yield(up to 99%)and selectivity(up to 99%)with the addition of N,N‐dimethylformamide or its analogs.The mechanistic studies revealed that the bromination proceeds via an electrophilic attack pathway and that HOBr may be the key intermediate in the bromination reaction.