A novel system coupling an up-flow anaerobic sludge blanket(UASB) and sequencing batch reactor(SBR) was introduced to achieve advanced removal of organic and nitrogen from ammonium-rich landfill leachate. UASB could r...A novel system coupling an up-flow anaerobic sludge blanket(UASB) and sequencing batch reactor(SBR) was introduced to achieve advanced removal of organic and nitrogen from ammonium-rich landfill leachate. UASB could remove 88.1% of the influent COD at a volumetric loading rate of 6.8 kg COD·m-3·d-1. Nitritation–denitritation was responsible for removing 99.8% of NH+4-N and 25% of total nitrogen in the SBR under alternating aerobic/anoxic modes. Simultaneous denitritation and methanogenesis in the UASB enhanced COD and TN removal, and replenished alkalinity consumed in nitritation. For the activated sludge of SBR, ammonia oxidizing bacteria were preponderant in nitrifying population, indicated by fluorescence in situ hybridization(FISH) analysis. The Monod equation is appropriate to describe the kinetic behavior of heterotrophic denitrifying bacteria,with its kinetic parameters determined from batch experiments.展开更多
Although to date individual gross N transformations could be quantified by 15N tracing method and models, studies are still limited in paddy soil. An incubation experiment was conducted using topsoil (0-20 cm) and s...Although to date individual gross N transformations could be quantified by 15N tracing method and models, studies are still limited in paddy soil. An incubation experiment was conducted using topsoil (0-20 cm) and subsoil (20-60 cm) of two paddy soils, alkaline and clay (AC) soil and neutral and silt loam (NSL) soil, to investigate gross N transformation rates. Soil samples were labeled with either 15NHaNO3 or NH4SN03, and then incubated at 25 ℃for 168 h at 60% water-holding capacity. The gross N mineralization (recalcitrant and labile organic N mineralization) rates in AC soil were 1.6 to 3.3 times higher than that in NSL soil, and the gross N nitrification (autotrophic and heterotrophic nitrification) rates in AC soil were 2.4 to 4.4 times higher than those in NSL soil. Although gross NO3 consumption (i.e., NO3 immobilization and dissimilatory NO3 reduction to NH+) rates increased with increasing gross nitrification rates, the measured net nitrification rate in AC soil was approximately 2.0 to 5.1 times higher than that in NSL soil. These showed that high NO3 production capacity of alkaline paddy soil should be a cause for concern because an accumulation of NO3 can increase the risk of NO3 loss through leaching and denitrification.展开更多
基金Supported by the National Natural Science Foundation of China(51168028,51168027)Science and Technique Foundation Project for Youth of Gansu Province(1107RJYA279)
文摘A novel system coupling an up-flow anaerobic sludge blanket(UASB) and sequencing batch reactor(SBR) was introduced to achieve advanced removal of organic and nitrogen from ammonium-rich landfill leachate. UASB could remove 88.1% of the influent COD at a volumetric loading rate of 6.8 kg COD·m-3·d-1. Nitritation–denitritation was responsible for removing 99.8% of NH+4-N and 25% of total nitrogen in the SBR under alternating aerobic/anoxic modes. Simultaneous denitritation and methanogenesis in the UASB enhanced COD and TN removal, and replenished alkalinity consumed in nitritation. For the activated sludge of SBR, ammonia oxidizing bacteria were preponderant in nitrifying population, indicated by fluorescence in situ hybridization(FISH) analysis. The Monod equation is appropriate to describe the kinetic behavior of heterotrophic denitrifying bacteria,with its kinetic parameters determined from batch experiments.
基金supported by the Ministry of Science and Technology of China(No.2007DFA30850)the German Ministry of Education and Research(No.0330800C)a German DAAD-PPP Project(No.50751522)joint with the China Scholarship Council(No.2011016097)
文摘Although to date individual gross N transformations could be quantified by 15N tracing method and models, studies are still limited in paddy soil. An incubation experiment was conducted using topsoil (0-20 cm) and subsoil (20-60 cm) of two paddy soils, alkaline and clay (AC) soil and neutral and silt loam (NSL) soil, to investigate gross N transformation rates. Soil samples were labeled with either 15NHaNO3 or NH4SN03, and then incubated at 25 ℃for 168 h at 60% water-holding capacity. The gross N mineralization (recalcitrant and labile organic N mineralization) rates in AC soil were 1.6 to 3.3 times higher than that in NSL soil, and the gross N nitrification (autotrophic and heterotrophic nitrification) rates in AC soil were 2.4 to 4.4 times higher than those in NSL soil. Although gross NO3 consumption (i.e., NO3 immobilization and dissimilatory NO3 reduction to NH+) rates increased with increasing gross nitrification rates, the measured net nitrification rate in AC soil was approximately 2.0 to 5.1 times higher than that in NSL soil. These showed that high NO3 production capacity of alkaline paddy soil should be a cause for concern because an accumulation of NO3 can increase the risk of NO3 loss through leaching and denitrification.