Composites of montmorillonite clay and sawdust were prepared with the desired result being having new materials which burn longer than unmodified sawdust. The three forms of clay used for preparation of composites wer...Composites of montmorillonite clay and sawdust were prepared with the desired result being having new materials which burn longer than unmodified sawdust. The three forms of clay used for preparation of composites were unmodified montmorillonite, mono-ionic montmorillonite and organically modified montmorillonite. Montmorillonite clay was converted to mono-ionic clay by ion exchange with sodium using a sodium chloride solution. The mono-ionic clay was organically modified with an organic surfactant, methyl triphenyl phosphonium bromide. Nanocomposites were then prepared by combining the modified and raw forms of the clay with sawdust. The solution blending method was used to make the nanocomposites. The samples were analysed using thermogravimetric analysis and cone calorimetry. The studies showed that the nanocomposite which was made from sawdust and 1% organically modified clay had the most improved results in terms of burning time and thermal stability, as well as giving a calorific value closest to unmodified sawdust and the least amount of residue.展开更多
文摘Composites of montmorillonite clay and sawdust were prepared with the desired result being having new materials which burn longer than unmodified sawdust. The three forms of clay used for preparation of composites were unmodified montmorillonite, mono-ionic montmorillonite and organically modified montmorillonite. Montmorillonite clay was converted to mono-ionic clay by ion exchange with sodium using a sodium chloride solution. The mono-ionic clay was organically modified with an organic surfactant, methyl triphenyl phosphonium bromide. Nanocomposites were then prepared by combining the modified and raw forms of the clay with sawdust. The solution blending method was used to make the nanocomposites. The samples were analysed using thermogravimetric analysis and cone calorimetry. The studies showed that the nanocomposite which was made from sawdust and 1% organically modified clay had the most improved results in terms of burning time and thermal stability, as well as giving a calorific value closest to unmodified sawdust and the least amount of residue.