热电材料可以将热能直接转化为电能,在回收利用废热发电领域有巨大潜力。相比于无机热电材料,有机热电材料具有机械柔性,适用于智能穿戴设备。利用具有优良平面性的噻吩基异靛青(TIIG)和含有烷氧噻吩侧链的苯并[1,2-b:4,5-b']二噻吩...热电材料可以将热能直接转化为电能,在回收利用废热发电领域有巨大潜力。相比于无机热电材料,有机热电材料具有机械柔性,适用于智能穿戴设备。利用具有优良平面性的噻吩基异靛青(TIIG)和含有烷氧噻吩侧链的苯并[1,2-b:4,5-b']二噻吩(BDT-TO)分别为电子受体和电子给体,设计合成了一种新型给受体(D-A)共轭聚合物。该聚合物有优良的溶解性和热稳定性以及较窄的带隙。聚合物薄膜经过FeCl_(3)/CH_(3)NO_(2)氧化掺杂后,电导率最高可达1.80 S cm^(-1),最优热电性能0.23μW m^(-1) K^(-2)。展开更多
近年来,随着能源危机的加剧,可以将热能与电能进行直接转换的热电材料得到了广泛的关注。在众多热电材料体系中,有机无机纳米复合热电材料具有独特优势。相比于无机材料,有机材料成本低、质量轻、机械柔韧性好、热导率较低。添加不同类...近年来,随着能源危机的加剧,可以将热能与电能进行直接转换的热电材料得到了广泛的关注。在众多热电材料体系中,有机无机纳米复合热电材料具有独特优势。相比于无机材料,有机材料成本低、质量轻、机械柔韧性好、热导率较低。添加不同类型的添加材料构成纳米复合材料后,额外引入的声子-界面散射能进一步降低热导率,同时有机无机材料能带不匹配引起的载流子筛选效应进一步提升塞贝克(Seebeck)系数。因此,目前大量工作证明有机无机纳米复合热电材料有潜力获得高的热电优值(Figure of merit,ZT),在微型热电制冷器件、柔性可穿戴发电设备、温度传感器等领域均具有光明的应用前景。本文聚焦聚(3,4-乙烯二氧噻吩)∶聚(苯乙烯磺酸盐)(PEDOT∶PSS)热电材料及以其为基底构成的纳米复合材料热电性能的研究工作,综述了提升PEDOT∶PSS热电性能的物理方法、化学试剂改性法等。进一步重点讨论了加入不同类型的无机填料的PEDOT∶PSS基纳米复合材料热电性质的研究进展,并揭示了其热电性能提升的内在机制。展开更多
To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state....To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state. In the system,R245 fa was selected as the working fluid. A scroll expander was modeled with empirical isentropic expansion efficiency.Plate heat exchangers were selected as the evaporator and the condenser, and detailed heat transfer models were programmed for both one-phase and two-phase regions. Simulations were carried out at seven different heat source temperatures( 80,90, 100, 110, 120, 130, 140 ℃) in combination with eight different heat sink temperatures( 20, 25, 30, 35, 40, 45, 50,55 ℃). Results showthat in the ORC without an internal heat exchanger( IHE), the optimum cycle efficiencies are in the range of 7. 0% to 7. 3% when the temperature differences between the heat source and heat sink are in the range of 70 to90 ℃. Simulations on CHP reveal that domestic hot water can be produced when the heat sink inlet temperature is higher than40 ℃, and the corresponding exergy efficiency and overall thermal efficiency are 29% to 56% and 87% to 90% higher than those in the non-CHP ORC, respectively. It is found that the IHE has little effect on the improvement of work output and efficiencies for the CHP ORC.展开更多
Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between th...Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output.展开更多
Solution-processable organic thermoelectric(OTE)materials have attracted much attention for their intrinsic advantages,such as low thermal conductivity,low cost,light weight,flexibility and compatibility in roll-to-ro...Solution-processable organic thermoelectric(OTE)materials have attracted much attention for their intrinsic advantages,such as low thermal conductivity,low cost,light weight,flexibility and compatibility in roll-to-roll printing technologies,in comparison to inorganic thermoelectric materials[1].The performance of a thermoelectric material is characterized by the figure of merit ZT。展开更多
Several transition metal oxides,including α-Fe2O3,Fe3O4,Co3O4,NiO,CuO and ZnO,were synthesized via an easily controlled hydrothermal method at assistance of organic amine(cyclohexylamine or triethylamine).The synthes...Several transition metal oxides,including α-Fe2O3,Fe3O4,Co3O4,NiO,CuO and ZnO,were synthesized via an easily controlled hydrothermal method at assistance of organic amine(cyclohexylamine or triethylamine).The synthesized samples were identified and characterized by X-ray diffraction(XRD),Transmission Electron Microscopy(TEM),High-resolution Electron Microscopy(HR-TEM),Field Emission Scanning Electron Microscopy(FE-SEM),N2 adsorption/desorption measurement.The resultant metal oxides displayed various morphologies in shape.The as-prepared samples were used as electrocatalysts(CuO was excluded) modified on a glassy carbon electrode for p-nitrophenol reduction in a basic solution.Fe3O4 and Co3O4 samples showed higher catalytic activities.展开更多
文摘热电材料可以将热能直接转化为电能,在回收利用废热发电领域有巨大潜力。相比于无机热电材料,有机热电材料具有机械柔性,适用于智能穿戴设备。利用具有优良平面性的噻吩基异靛青(TIIG)和含有烷氧噻吩侧链的苯并[1,2-b:4,5-b']二噻吩(BDT-TO)分别为电子受体和电子给体,设计合成了一种新型给受体(D-A)共轭聚合物。该聚合物有优良的溶解性和热稳定性以及较窄的带隙。聚合物薄膜经过FeCl_(3)/CH_(3)NO_(2)氧化掺杂后,电导率最高可达1.80 S cm^(-1),最优热电性能0.23μW m^(-1) K^(-2)。
文摘近年来,随着能源危机的加剧,可以将热能与电能进行直接转换的热电材料得到了广泛的关注。在众多热电材料体系中,有机无机纳米复合热电材料具有独特优势。相比于无机材料,有机材料成本低、质量轻、机械柔韧性好、热导率较低。添加不同类型的添加材料构成纳米复合材料后,额外引入的声子-界面散射能进一步降低热导率,同时有机无机材料能带不匹配引起的载流子筛选效应进一步提升塞贝克(Seebeck)系数。因此,目前大量工作证明有机无机纳米复合热电材料有潜力获得高的热电优值(Figure of merit,ZT),在微型热电制冷器件、柔性可穿戴发电设备、温度传感器等领域均具有光明的应用前景。本文聚焦聚(3,4-乙烯二氧噻吩)∶聚(苯乙烯磺酸盐)(PEDOT∶PSS)热电材料及以其为基底构成的纳米复合材料热电性能的研究工作,综述了提升PEDOT∶PSS热电性能的物理方法、化学试剂改性法等。进一步重点讨论了加入不同类型的无机填料的PEDOT∶PSS基纳米复合材料热电性质的研究进展,并揭示了其热电性能提升的内在机制。
基金Special Fund for IndustryUniversity and Research Cooperation(No.2011DFR61130)
文摘To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state. In the system,R245 fa was selected as the working fluid. A scroll expander was modeled with empirical isentropic expansion efficiency.Plate heat exchangers were selected as the evaporator and the condenser, and detailed heat transfer models were programmed for both one-phase and two-phase regions. Simulations were carried out at seven different heat source temperatures( 80,90, 100, 110, 120, 130, 140 ℃) in combination with eight different heat sink temperatures( 20, 25, 30, 35, 40, 45, 50,55 ℃). Results showthat in the ORC without an internal heat exchanger( IHE), the optimum cycle efficiencies are in the range of 7. 0% to 7. 3% when the temperature differences between the heat source and heat sink are in the range of 70 to90 ℃. Simulations on CHP reveal that domestic hot water can be produced when the heat sink inlet temperature is higher than40 ℃, and the corresponding exergy efficiency and overall thermal efficiency are 29% to 56% and 87% to 90% higher than those in the non-CHP ORC, respectively. It is found that the IHE has little effect on the improvement of work output and efficiencies for the CHP ORC.
基金Project(2018YFB1501805)supported by the National Key Research and Development Program of ChinaProject(51406130)supported by the National Natural Science Foundation of ChinaProject(201604-504)supported by the Key Laboratory of Efficient Utilization of Low and Medium Grade Energy(Tianjin University),China
文摘Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output.
基金the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,and 21961160720)for financial support。
文摘Solution-processable organic thermoelectric(OTE)materials have attracted much attention for their intrinsic advantages,such as low thermal conductivity,low cost,light weight,flexibility and compatibility in roll-to-roll printing technologies,in comparison to inorganic thermoelectric materials[1].The performance of a thermoelectric material is characterized by the figure of merit ZT。
基金supported by the Excellent Young Academic Foundation of Anhui Province (2010SQRL163)
文摘Several transition metal oxides,including α-Fe2O3,Fe3O4,Co3O4,NiO,CuO and ZnO,were synthesized via an easily controlled hydrothermal method at assistance of organic amine(cyclohexylamine or triethylamine).The synthesized samples were identified and characterized by X-ray diffraction(XRD),Transmission Electron Microscopy(TEM),High-resolution Electron Microscopy(HR-TEM),Field Emission Scanning Electron Microscopy(FE-SEM),N2 adsorption/desorption measurement.The resultant metal oxides displayed various morphologies in shape.The as-prepared samples were used as electrocatalysts(CuO was excluded) modified on a glassy carbon electrode for p-nitrophenol reduction in a basic solution.Fe3O4 and Co3O4 samples showed higher catalytic activities.