Based on the data of resources,environment and foundation of productio n,applying principal compo-nents-clustering quantitative analysis,this article divides the maritime space of Changshan Islands into three regions ...Based on the data of resources,environment and foundation of productio n,applying principal compo-nents-clustering quantitative analysis,this article divides the maritime space of Changshan Islands into three regions of agricultural-pasturalization,pr oviding a scientific basis for the ra tional distribution of marine culti vation.The three re-gions are as follows:1)The region of an agricultural-pastu ralization in the northern part of ma ritime space.It includes Da Wangjia and Shicheng islands.The ma in production is cultivation of praw n and molluscs in sea beach,float raft culture of mussel in shallow sea and scallop,and breeding of sea cucumber in subma rine.2)The region of agricultur-al-pasturalization in the middle we stern part of maritime space.It includes Da Changshan and Guanglu island s,and west-ern part of Xiao Chengshan Island.The main production is float raft cultu re of mussel and scallop in shallow se a,and breed-ing of sea cucumber in submarine.3)The region of agricultural-pastura lization of the southeastern part of maritime space.It includes the eastern part of Xiao ChangShan Island,Haiyang and Zhangzi islands.The main production is bre eding of abalone,sea cucumber,algaes and fish.展开更多
A series of laboratory incubation experiments were conducted to examine the decomposition of algal organic matter in clay-enriched marine sediment under oxic and anoxic conditions. During the 245-day incubation period...A series of laboratory incubation experiments were conducted to examine the decomposition of algal organic matter in clay-enriched marine sediment under oxic and anoxic conditions. During the 245-day incubation period, changes in the concentrations of TOC, major algal fatty acid components (14:0, 16:0, 16:1, 18:1 and 20:5), and n-alkanes (C16-C23) were quantified in the samples. Our results indicate that the organic matters were degraded more rapidly in oxic than anoxic conditions. Adsorption of fatty acids onto clay minerals was a rapid and reversible process. Using a simple G model, we calculated the decomposition rate constants for TOC, n-alkanes and fatty acids which ranged from 0.017-0.024 d^-1, 0.049-0.103 d^-1 and 0.011 to 0.069 d-l, respectively. Algal organic matter degraded in two stages characterized by a fast and a slow degradation processes. The addition of clay minerals montmorillonite and kaolinite to the sediments showed significant influence affecting the decomposition processes of algal TOC and fatty acids by adsorption and incorporation of the compounds with clay particles. Adsorption/association of fatty acids by clay minerals was rapid but appeared to be a slow reversible process. In addition to the sediment redox and clay influence, the structure of the compounds also played important roles in affecting their degradation dynamic in sediments.展开更多
When gasoline is burned to power an automotive engine, a portion of the fuel remains unburned or is partially burned and leaves the engine as hydrocarbon and oxygenated compounds. In addition, a small portion of the f...When gasoline is burned to power an automotive engine, a portion of the fuel remains unburned or is partially burned and leaves the engine as hydrocarbon and oxygenated compounds. In addition, a small portion of the fuel can escape the vehicle through evaporation. Changes in alkanes, olefins and aromatics each affect emissions differently, which could complicate control strategies for air pollution. In this study, we collected 31 gasoline samples over five provinces and cities(Beijing, Tianjin, Hebei, Shandong, and Shaanxi) in North China between 2012 and 2013. The organic composition of the gasoline samples was analyzed using the gas chromatography-mass spectrometry(GC-MS) method, and the aniline compounds were analyzed by solvent extraction and the GC-MS method. The ratios of alkanes, aromatics, olefins and other organic compounds in gasoline were 40.6%, 38.1%, 12.9% and 8.4%, respectively. The aromatic and benzene exceedances were 15 and 8 based on the China's gasoline standards(III), and they accounted for 48.4% and 25.8% of all the gasoline samples, respectively. Strong carcinogen aniline compounds were detected in all 31 samples, and the content of aniline compounds in 3 samples exceeded 1%. The high proportion of aromatics and olefins in the gasoline increased the emissions of carbon monoxide(CO) and toxics, as well as the atmospheric photochemical reactivity of exhaust emissions, which could hasten the formation of secondary pollutants. Our results are helpful for redefining government strategies to control air pollution in North China and relevant for developing new refining technology throughout China.展开更多
Soil visible-near infrared diffuse reflectance spectroscopy(vis-NIR DRS)has become an important area of research in the fields of remote and proximal soil sensing.The technique is considered to be particularly useful ...Soil visible-near infrared diffuse reflectance spectroscopy(vis-NIR DRS)has become an important area of research in the fields of remote and proximal soil sensing.The technique is considered to be particularly useful for acquiring data for soil digital mapping,precision agriculture and soil survey.In this study,1581 soil samples were collected from 14 provinces in China,including Tibet,Xinjiang,Heilongjiang,and Hainan.The samples represent 16 soil groups of the Genetic Soil Classification of China.After air-drying and sieving,the diffuse reflectance spectra of the samples were measured under laboratory conditions in the range between 350 and 2500 nm using a portable vis-NIR spectrometer.All the soil spectra were smoothed using the Savitzky-Golay method with first derivatives before performing multivariate data analyses.The spectra were compressed using principal components analysis and the fuzzy k-means method was used to calculate the optimal soil spectral classification.The scores of the principal component analyses were classified into five clusters that describe the mineral and organic composition of the soils.The results on the classification of the spectra are comparable to the results of other similar research.Spectroscopic predictions of soil organic matter concentrations used a combination of the soil spectral classification with multivariate calibration using partial least squares regression(PLSR).This combination significantly improved the predictions of soil organic matter(R2=0.899;RPD=3.158)compared with using PLSR alone(R2=0.697;RPD=1.817).展开更多
文摘Based on the data of resources,environment and foundation of productio n,applying principal compo-nents-clustering quantitative analysis,this article divides the maritime space of Changshan Islands into three regions of agricultural-pasturalization,pr oviding a scientific basis for the ra tional distribution of marine culti vation.The three re-gions are as follows:1)The region of an agricultural-pastu ralization in the northern part of ma ritime space.It includes Da Wangjia and Shicheng islands.The ma in production is cultivation of praw n and molluscs in sea beach,float raft culture of mussel in shallow sea and scallop,and breeding of sea cucumber in subma rine.2)The region of agricultur-al-pasturalization in the middle we stern part of maritime space.It includes Da Changshan and Guanglu island s,and west-ern part of Xiao Chengshan Island.The main production is float raft cultu re of mussel and scallop in shallow se a,and breed-ing of sea cucumber in submarine.3)The region of agricultural-pastura lization of the southeastern part of maritime space.It includes the eastern part of Xiao ChangShan Island,Haiyang and Zhangzi islands.The main production is bre eding of abalone,sea cucumber,algaes and fish.
基金Supported by the National Natural Science Foundation of China (Nos. 40476038 and 40576039)
文摘A series of laboratory incubation experiments were conducted to examine the decomposition of algal organic matter in clay-enriched marine sediment under oxic and anoxic conditions. During the 245-day incubation period, changes in the concentrations of TOC, major algal fatty acid components (14:0, 16:0, 16:1, 18:1 and 20:5), and n-alkanes (C16-C23) were quantified in the samples. Our results indicate that the organic matters were degraded more rapidly in oxic than anoxic conditions. Adsorption of fatty acids onto clay minerals was a rapid and reversible process. Using a simple G model, we calculated the decomposition rate constants for TOC, n-alkanes and fatty acids which ranged from 0.017-0.024 d^-1, 0.049-0.103 d^-1 and 0.011 to 0.069 d-l, respectively. Algal organic matter degraded in two stages characterized by a fast and a slow degradation processes. The addition of clay minerals montmorillonite and kaolinite to the sediments showed significant influence affecting the decomposition processes of algal TOC and fatty acids by adsorption and incorporation of the compounds with clay particles. Adsorption/association of fatty acids by clay minerals was rapid but appeared to be a slow reversible process. In addition to the sediment redox and clay influence, the structure of the compounds also played important roles in affecting their degradation dynamic in sediments.
基金supported by Chinese Academy of Sciences Strategic Priority Research Program Grant(XDB05020000,XDA05100100)the National Natural Science Foundation of China(41230642,41021004,41203053)
文摘When gasoline is burned to power an automotive engine, a portion of the fuel remains unburned or is partially burned and leaves the engine as hydrocarbon and oxygenated compounds. In addition, a small portion of the fuel can escape the vehicle through evaporation. Changes in alkanes, olefins and aromatics each affect emissions differently, which could complicate control strategies for air pollution. In this study, we collected 31 gasoline samples over five provinces and cities(Beijing, Tianjin, Hebei, Shandong, and Shaanxi) in North China between 2012 and 2013. The organic composition of the gasoline samples was analyzed using the gas chromatography-mass spectrometry(GC-MS) method, and the aniline compounds were analyzed by solvent extraction and the GC-MS method. The ratios of alkanes, aromatics, olefins and other organic compounds in gasoline were 40.6%, 38.1%, 12.9% and 8.4%, respectively. The aromatic and benzene exceedances were 15 and 8 based on the China's gasoline standards(III), and they accounted for 48.4% and 25.8% of all the gasoline samples, respectively. Strong carcinogen aniline compounds were detected in all 31 samples, and the content of aniline compounds in 3 samples exceeded 1%. The high proportion of aromatics and olefins in the gasoline increased the emissions of carbon monoxide(CO) and toxics, as well as the atmospheric photochemical reactivity of exhaust emissions, which could hasten the formation of secondary pollutants. Our results are helpful for redefining government strategies to control air pollution in North China and relevant for developing new refining technology throughout China.
基金This project was funded in part by the National High Technology Research and Development Program (Grant No. 2013AA102301)the program for New Century Talents in University (Grant No. NCET-10-0694), and the National Natural Science Foundation of China (Grant No. 41271234)
文摘Soil visible-near infrared diffuse reflectance spectroscopy(vis-NIR DRS)has become an important area of research in the fields of remote and proximal soil sensing.The technique is considered to be particularly useful for acquiring data for soil digital mapping,precision agriculture and soil survey.In this study,1581 soil samples were collected from 14 provinces in China,including Tibet,Xinjiang,Heilongjiang,and Hainan.The samples represent 16 soil groups of the Genetic Soil Classification of China.After air-drying and sieving,the diffuse reflectance spectra of the samples were measured under laboratory conditions in the range between 350 and 2500 nm using a portable vis-NIR spectrometer.All the soil spectra were smoothed using the Savitzky-Golay method with first derivatives before performing multivariate data analyses.The spectra were compressed using principal components analysis and the fuzzy k-means method was used to calculate the optimal soil spectral classification.The scores of the principal component analyses were classified into five clusters that describe the mineral and organic composition of the soils.The results on the classification of the spectra are comparable to the results of other similar research.Spectroscopic predictions of soil organic matter concentrations used a combination of the soil spectral classification with multivariate calibration using partial least squares regression(PLSR).This combination significantly improved the predictions of soil organic matter(R2=0.899;RPD=3.158)compared with using PLSR alone(R2=0.697;RPD=1.817).