Loss of ammonia-nitrogen to volatilization and the over application of phosphorus in agricultural wastewaters has led to excess phosphorus build up in topsoil and in surface waters. In order to increase the usable amo...Loss of ammonia-nitrogen to volatilization and the over application of phosphorus in agricultural wastewaters has led to excess phosphorus build up in topsoil and in surface waters. In order to increase the usable amount nitrogen in agricultural wastewaters, the wastewaters underwent a nitrogen treatment process consisting of a hanging basket biological filter. The filters utilized never before used biological growth media, rice hulls, to assist in the formation of a mature biofilms as the oxidation of ammonia to nitrate. The filter design was used on a lab scale that treated both artificial wastewater and dairy parlor wastewater treated with a lime precipitation step for phosphorus treatment. The filters were tested to see if bio-fouling occurred in the filter media bed under high nitrogen loading, if the rice hulls could withstand an extended time frame as bacterial growth media, and to see if the oxidation of ammonia to nitrate would occur. A 50% reduction in ammonia occurred between 30 and 48 hrs in each trial with eventual nitrite oxidation reported in the final two trials. Statistical analysis preformed determined that the ammonia removal rates at the beginning of both the synthetic wastewater and dairy parlor wastewater ten-day tests were statistically similar, but varied toward the end of the trials.展开更多
文摘Loss of ammonia-nitrogen to volatilization and the over application of phosphorus in agricultural wastewaters has led to excess phosphorus build up in topsoil and in surface waters. In order to increase the usable amount nitrogen in agricultural wastewaters, the wastewaters underwent a nitrogen treatment process consisting of a hanging basket biological filter. The filters utilized never before used biological growth media, rice hulls, to assist in the formation of a mature biofilms as the oxidation of ammonia to nitrate. The filter design was used on a lab scale that treated both artificial wastewater and dairy parlor wastewater treated with a lime precipitation step for phosphorus treatment. The filters were tested to see if bio-fouling occurred in the filter media bed under high nitrogen loading, if the rice hulls could withstand an extended time frame as bacterial growth media, and to see if the oxidation of ammonia to nitrate would occur. A 50% reduction in ammonia occurred between 30 and 48 hrs in each trial with eventual nitrite oxidation reported in the final two trials. Statistical analysis preformed determined that the ammonia removal rates at the beginning of both the synthetic wastewater and dairy parlor wastewater ten-day tests were statistically similar, but varied toward the end of the trials.