A transparent 3-mercaptopropyl trimethoxysilane(MPTMS)/Ag/MoO3 composite anode is introduced to fabricate green organic light-emitting diodes(OLEDs). Effects of the composite anode on brightness and operating voltage ...A transparent 3-mercaptopropyl trimethoxysilane(MPTMS)/Ag/MoO3 composite anode is introduced to fabricate green organic light-emitting diodes(OLEDs). Effects of the composite anode on brightness and operating voltage of OLEDs are researched. By optimizing the thickness of each layer of the MPTMS/Ag/MoO3 structure, the transmittance of MPTMS/Ag(8 nm)/Mo O3(30 nm) reaches over 75% at about 520 nm. The sheet resistance is 3.78 ?/□, corresponding to this MPTMS/Ag(8 nm)/MoO3(30 nm) structure. For the OLEDs with the optimized anode, the maximum electroluminescence(EL) current efficiency reaches 4.5 cd/A, and the maximum brightness is 37 036 cd/m2. Moreover, the OLEDs with the optimized anode exhibit a very low operating voltage(2.6 V) for obtaining brightness of 100 cd/m2. We consider that the improved device performance is mainly attributed to the enhanced hole injection resulting from the reduced hole injection barrier height. Our results indicate that employing the MPTMS/Ag/MoO3 as a composite anode can be a simple and promising technique in the fabrication of low-operating voltage and high-brightness OLEDs.展开更多
基金supported by the National Natural Science Foundation of China(No.21174036)the National High Technology Research and Development Program of China(863 Program)(No.2012AA011901)the National Basic Research Program of China(973 Program)(No.2012CB723406)
文摘A transparent 3-mercaptopropyl trimethoxysilane(MPTMS)/Ag/MoO3 composite anode is introduced to fabricate green organic light-emitting diodes(OLEDs). Effects of the composite anode on brightness and operating voltage of OLEDs are researched. By optimizing the thickness of each layer of the MPTMS/Ag/MoO3 structure, the transmittance of MPTMS/Ag(8 nm)/Mo O3(30 nm) reaches over 75% at about 520 nm. The sheet resistance is 3.78 ?/□, corresponding to this MPTMS/Ag(8 nm)/MoO3(30 nm) structure. For the OLEDs with the optimized anode, the maximum electroluminescence(EL) current efficiency reaches 4.5 cd/A, and the maximum brightness is 37 036 cd/m2. Moreover, the OLEDs with the optimized anode exhibit a very low operating voltage(2.6 V) for obtaining brightness of 100 cd/m2. We consider that the improved device performance is mainly attributed to the enhanced hole injection resulting from the reduced hole injection barrier height. Our results indicate that employing the MPTMS/Ag/MoO3 as a composite anode can be a simple and promising technique in the fabrication of low-operating voltage and high-brightness OLEDs.