保护性耕作对于培肥地力、保障粮食安全、缓解气候变化等具有重要意义。本研究搜集了1980~2012年8月有关中国农田保护性耕作的157个试验点的303对田间定位试验数据,采用Meta分析方法定量分析了保护性耕作下我国农田耕层土壤(旱地0~20...保护性耕作对于培肥地力、保障粮食安全、缓解气候变化等具有重要意义。本研究搜集了1980~2012年8月有关中国农田保护性耕作的157个试验点的303对田间定位试验数据,采用Meta分析方法定量分析了保护性耕作下我国农田耕层土壤(旱地0~20cm,水田0~15cm)有机碳(SOC)变化特征。结果表明,与传统耕作(CT)相比,传统耕作+秸秆还田(CTS)、免耕(NT)和免耕+秸秆还田(NTS)三种保护性耕作均能显著提高SOC含量,变化速率分别为NTS(0.52 g kg-1a-1)>NT(0.35 g kg-1a-1)>CTS(0.22 g kg-1a-1);三种保护性耕作下SOC变化速率为水田>旱地,一年两熟制>一年一熟制;保护性耕作下,SOC积累与否及其幅度并不完全取决于其初始有机碳含量,短期试验(≤5a)SOC增加速率是长期试验(>5a)的1.75倍,如果仅采用短期试验结果可能高估保护性耕作的固碳潜力。展开更多
Global warming has become an increasing concern, and using soil as a carbon sink to sequester carbon dioxide has attracted much attention in recent years. In this study, soil organic carbon (SOC) content and organic c...Global warming has become an increasing concern, and using soil as a carbon sink to sequester carbon dioxide has attracted much attention in recent years. In this study, soil organic carbon (SOC) content and organic carbon density were estimated based on a soil survey of a small landscape in Dongguan, South China, with spatial heterogeneity of SOC distribution and the impacts of land-use patterns on soil organic carbon content assessed. Field sampling was carried out based on a 150 m×150 m grid system overlaid on the topographic map of the study area and samples were collected in three 20-cm layers to a depth of 60 cm. Spatial variability in the distribution of SOC was assessed using the Kruskal-Wallis test. Results showed that SOC in the topsoil layer (0-20 cm) was not much higher or even lower in some sites than the underlying layers, and except for the two sites covered with natural woodland, it did not exhibit a pronounced vertical gradient. The difference in both horizontal and vertical distribution of SOC was not statistically significant. However, in the topsoil layer among land-use/land-cover patterns, significant differences (P≤0.05) in SOC distribution existed, indicating that management practices had great impact on SOC content. SOC storage in the study area to a depth of 20, 40, and 60 cm was estimated as 2.13×106 kg, 3.46×106 kg, and 4.61×106 kg, respectively.展开更多
Soil samples for conventional management (CM) and intensive management (IM) practices were taken over a year at 2-month intervals to determine the effect of management practices on soil organic carbon (SOC) and to qua...Soil samples for conventional management (CM) and intensive management (IM) practices were taken over a year at 2-month intervals to determine the effect of management practices on soil organic carbon (SOC) and to quantify seasonal dynamics in SOC for bamboo (Phyllostachys pubescens Mazel ex H. de Lehaie) stands. The results with IM compared to CM showed large decreases in total organic carbon (TOC), microbial biomass carbon (MBC), water-soluble organic carbon (WSOC), and the MBC/TOC ratio in the soils. With all IM plots in the 0-20 cm depth across sampling periods, average decreases compared with CM were: TOC, 12.1%; MBC, 26.1%; WSOC, 29.3%; the MBC/TOC ratio, 16.1%; and the WSOC/TOC ratio, 20.0%. Due to seasonal changes of climate, seasonal variations were observed in MBC and WSOC. Soil MBC in the 0-20 cm depth in September compared to May were 122.9% greater for CM and 57.6% greater for IM. However, due primarily to soil temperature, soil MBC was higher during the July to November period, whereas because of soil moisture, WSOC was lower in July and January. This study revealed that intensive management in bamboo plantations depleted the soil C pool; therefore, soil quality with IM should be improved through application of organic manures.展开更多
To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in ...To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in the centralpart of the Loess Plateau, China. Results showed that during the 150 years of local vegetation rehabilitation SOC increasedsignificantly (P < 0.05) over time in the initial period of 55-59 years, but slightly decreased afterwards. Average SOCdensities for the 0-100 cm layer of farmland, grassland, shrubland and forest were 4.46, 5.05, 9.95, and 7.49 kg C m-3,respectively. The decrease in SOC from 60 to 150 years of abandonment implied that the soil carbon pool was a sink forCO2 before the shrubland stage and became a source in the later period. This change resulted from the spatially variedcomposition and structure of the vegetation. Vegetation recovery had a maximum effect on the surface (0-20 cm) SOCpool. It. was concluded that vegetation recovery on the Loess Plateau could result in significantly increased sequestrationof atmospheric CO2 in soil and vegetation, which was ecologically important for mitigating the increase of atmosphericconcentration of CO2 and for ameliorating the local eco-environment.展开更多
Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary....Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concen- trations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region, Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%:t:0.05% and 1.8%--0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riv- erine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95× 10^5 t of DIC, 0.64× 10^5 t of DOC, 78.58× 10^5 t of PIC and 2.29× 10^5 t of POC to the sea.展开更多
Based on data from a field survey in 2001 along the Northeast China transect (NECT), a precipitation gradient,and a short-term simulation experiment under ambient CO2 of 350 μmol mol-1 and doubled CO2 of 700 μmol mo...Based on data from a field survey in 2001 along the Northeast China transect (NECT), a precipitation gradient,and a short-term simulation experiment under ambient CO2 of 350 μmol mol-1 and doubled CO2 of 700 μmol mol-1with different soil moisture contents of 30%-45%, 45%-60%, and 60%-80% soil water holding capacity, the distributionof soil organic carbon and labile carbon along the NECT, their relationships with precipitation and their responses toCO2 enrichment and soil moisture changes were analyzed. The results indicated that the soil labile carbon along thegradient was significantly related to soil organic carbon (r = 0.993, P < 0.001). The soil labile carbon decreased morerapidly with depth than organic carbon. The soil organic and labile carbon along the gradient decreased with decrease inlongitude in both the topsoils and subsoils, and the coefficient of variation for the labile carbon was greater than that forthe organic carbon. Both the soil organic carbon and labile carbon had significant linear relationships with precipitation,with the correlation coefficient of soil organic carbon being lower (0.677 at P < 0.001) than that of soil labile carbon(0.712 at P < 0.001). In the simulation experiment with doubled and ambient CO2 and different moisture contents, thecoefficient of variation for soil organic carbon was only 1.3%, while for soil labile carbon it was 29.7%. With doubled CO2concentration (700 μmol mol-1), soil labile carbon decreased significantly at 45% to 60% of soil moisture content. Theseindicated that soil labile carbon was relatively more sensitive to environmental changes than soil organic carbon.展开更多
Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and mic...Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.展开更多
Soil labile (biologically active) organic carbon fractions under different crop rotation systems in Jiangsu Province, China, were investigated after 10 years of rotation. The rotation systems, including green manureri...Soil labile (biologically active) organic carbon fractions under different crop rotation systems in Jiangsu Province, China, were investigated after 10 years of rotation. The rotation systems, including green manurerice-rice (GmRR), wheat-rice-rice (WRR), wheat-rice (WR) and wheat/corn intercrop-rice (WCR) rotations,were established on paddy soils using a randomized complete block design with three replicates. The total organic carbon (TOC), total nitrogen (TN) and water-soluble organic carbon (WSOC) in the soils under different systems were greater in the GmRR and WRR than in the WR and WCR rotation systems because the soils under triple cropping often received more crop residues than the soils under double cropping. Both the WSOC and the microbial biomass carbon (MBC) contents in the soils of the GmRR rotation system were significantly greater than those in the other crop rotation systems, which was due to the return of green manure to the fields of the GmRR rotation system. The results of a 13C nuclear magnetic resonance (13C-NMR) analysis indicated that the structural characteristics of soil WSOC were similar under the four crop rotation systems with carbohydrates and long-chain aliphatics being the major components. Correlation analysis showed that the content of the WSOC was positively correlated with that of the MBC (P <0.01),and all had significantly positive correlations with TOC and TN. The coefficients of variation (CVs) for WSOC and WSOC/TOC were greater than the other indices (e.g, MBC, TOC and TN), suggesting that WSOC in the soils was more sensitive to these rotation systems. The results above indicated that the soil amended with green manure could not only increase the usable C source for soil microorganisms, but could also enhance soil organic matter content; hence, rotation with green manure would be a good strategy for sustainable agriculture.展开更多
The observations of 25-yr long-term experiment in Zhejiang paddy soils showed that the soil organic matter could increase continuously with applying organic manure, and the increase in rate enhanced along with the app...The observations of 25-yr long-term experiment in Zhejiang paddy soils showed that the soil organic matter could increase continuously with applying organic manure, and the increase in rate enhanced along with the application rates of organic manure. By mathematical modeling, the soil organic matter increased by 22 kg when 1 t of fresh FYM was applied. The CO2 emission resulting from the mineralization of soil organic matter increased with the increase in the application rate of the organic manure as well as the increase in the root residues. It is expected that the CO2 emission will be at 10.04-21.61 t ha-1 yr-1 when 16.5-49.5 t ha-1 yr-1 of fresh FYM is applied. The soil organic carbon from mineralization and release of applied organic carbon (fresh FYM and root residues) will affect the CO2 concentration in the atmosphere. So, the higher the application rate of organic manure, the more is the fixed organic carbon. The CO2 fixation will be at 1.885-3.463 t ha-1 yr-1 when 16.5-49.5 t ha-1 yr-1 of fresh FYM is applied. Thus, the CO2 fixation will increase by 46.7 kg by applying 1 t fresh FYM. To apply organic manure continuously in rice fields may reduce the contribution to the increase of CO2 concentration in the atmosphere.展开更多
This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different...This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different size primary particle fractions in hilly regions of western Iran.Three popular land uses in the selected site including natural forest(NF),disturbed forest(DF) and cultivated land(CL) and three slope gradients(0-10 %,S1,10-30 %,S2,and 30-50%,S3) were employed as the basis of soil sampling.A total of 99 soil samples were taken from the 0-10 cm surface layer in the whole studied hilly region studied.The results showed that the POC in the forest land use in all slope gradients was considerably more than the deforested and cultivated lands and the highest value was observed at NF-S1 treatment with 9.13%.The values of PTN were significantly higher in the forest land use and in the down slopes(0.5%) than in the deforested and cultivated counterparts and steep slopes(0.09%) except for the CL land use.The C:N ratios in POC fraction were around 17-18 in the forest land and around 23 in the cultivated land.In forest land,the silt-associated OC was highest among the primary particles.The enrichment factor of SOC,EC,was the highest for POC.For the primary particles,EC of both primary fractions of silt and clay showed following trend for selected land uses and slope gradients:CL> DF> NF and S3 > S2> S1.Slope gradient of landscape significantly affected the OC and TN contents associated with the silt and clay particles,whereas higher OC and TN contents were observed in lower positions and the lowest value was measured in the steep slopes.Overall,the results showed that native forest land improves soil organic carbon storage and can reduce the carbon emission and soil erosion especially in the mountainous regions with high rainfall in west of Iran.展开更多
文摘保护性耕作对于培肥地力、保障粮食安全、缓解气候变化等具有重要意义。本研究搜集了1980~2012年8月有关中国农田保护性耕作的157个试验点的303对田间定位试验数据,采用Meta分析方法定量分析了保护性耕作下我国农田耕层土壤(旱地0~20cm,水田0~15cm)有机碳(SOC)变化特征。结果表明,与传统耕作(CT)相比,传统耕作+秸秆还田(CTS)、免耕(NT)和免耕+秸秆还田(NTS)三种保护性耕作均能显著提高SOC含量,变化速率分别为NTS(0.52 g kg-1a-1)>NT(0.35 g kg-1a-1)>CTS(0.22 g kg-1a-1);三种保护性耕作下SOC变化速率为水田>旱地,一年两熟制>一年一熟制;保护性耕作下,SOC积累与否及其幅度并不完全取决于其初始有机碳含量,短期试验(≤5a)SOC增加速率是长期试验(>5a)的1.75倍,如果仅采用短期试验结果可能高估保护性耕作的固碳潜力。
基金Project supported by the Key Research Program of Guangdong Province (No. 2002C20703)the Key Research Program of the Forestry Administration of Guangdong Province (No. 2002-12).
文摘Global warming has become an increasing concern, and using soil as a carbon sink to sequester carbon dioxide has attracted much attention in recent years. In this study, soil organic carbon (SOC) content and organic carbon density were estimated based on a soil survey of a small landscape in Dongguan, South China, with spatial heterogeneity of SOC distribution and the impacts of land-use patterns on soil organic carbon content assessed. Field sampling was carried out based on a 150 m×150 m grid system overlaid on the topographic map of the study area and samples were collected in three 20-cm layers to a depth of 60 cm. Spatial variability in the distribution of SOC was assessed using the Kruskal-Wallis test. Results showed that SOC in the topsoil layer (0-20 cm) was not much higher or even lower in some sites than the underlying layers, and except for the two sites covered with natural woodland, it did not exhibit a pronounced vertical gradient. The difference in both horizontal and vertical distribution of SOC was not statistically significant. However, in the topsoil layer among land-use/land-cover patterns, significant differences (P≤0.05) in SOC distribution existed, indicating that management practices had great impact on SOC content. SOC storage in the study area to a depth of 20, 40, and 60 cm was estimated as 2.13×106 kg, 3.46×106 kg, and 4.61×106 kg, respectively.
基金Project supported by the National Natural Science Foundation of China (No. 30271072) and the Zhejiang Provincial Natural Science Foundation of China (No. 301250).
文摘Soil samples for conventional management (CM) and intensive management (IM) practices were taken over a year at 2-month intervals to determine the effect of management practices on soil organic carbon (SOC) and to quantify seasonal dynamics in SOC for bamboo (Phyllostachys pubescens Mazel ex H. de Lehaie) stands. The results with IM compared to CM showed large decreases in total organic carbon (TOC), microbial biomass carbon (MBC), water-soluble organic carbon (WSOC), and the MBC/TOC ratio in the soils. With all IM plots in the 0-20 cm depth across sampling periods, average decreases compared with CM were: TOC, 12.1%; MBC, 26.1%; WSOC, 29.3%; the MBC/TOC ratio, 16.1%; and the WSOC/TOC ratio, 20.0%. Due to seasonal changes of climate, seasonal variations were observed in MBC and WSOC. Soil MBC in the 0-20 cm depth in September compared to May were 122.9% greater for CM and 57.6% greater for IM. However, due primarily to soil temperature, soil MBC was higher during the July to November period, whereas because of soil moisture, WSOC was lower in July and January. This study revealed that intensive management in bamboo plantations depleted the soil C pool; therefore, soil quality with IM should be improved through application of organic manures.
基金the National Key Basic Research Support Foundation of China (No. 2002CB111502), the NationalNatural Science Foundation of China (Nos. 40371074 and 40025106) and the China Postdoctoral Science Foundation(No. 2003033023).
文摘To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in the centralpart of the Loess Plateau, China. Results showed that during the 150 years of local vegetation rehabilitation SOC increasedsignificantly (P < 0.05) over time in the initial period of 55-59 years, but slightly decreased afterwards. Average SOCdensities for the 0-100 cm layer of farmland, grassland, shrubland and forest were 4.46, 5.05, 9.95, and 7.49 kg C m-3,respectively. The decrease in SOC from 60 to 150 years of abandonment implied that the soil carbon pool was a sink forCO2 before the shrubland stage and became a source in the later period. This change resulted from the spatially variedcomposition and structure of the vegetation. Vegetation recovery had a maximum effect on the surface (0-20 cm) SOCpool. It. was concluded that vegetation recovery on the Loess Plateau could result in significantly increased sequestrationof atmospheric CO2 in soil and vegetation, which was ecologically important for mitigating the increase of atmosphericconcentration of CO2 and for ameliorating the local eco-environment.
基金supported by the National Basic Research Program of China (No. 2002CB412504)
文摘Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concen- trations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region, Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%:t:0.05% and 1.8%--0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riv- erine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95× 10^5 t of DIC, 0.64× 10^5 t of DOC, 78.58× 10^5 t of PIC and 2.29× 10^5 t of POC to the sea.
基金the National Key Basic Research Support Foundation of China (No. G1999043407), the KnowledgeInnovation Project of the Chinese Academy of Sciences (Nos. KZCX1-SW-01-12 and KSCX2-1-07) and the NationalNatural Science Foundation of China (No. 40231018).
文摘Based on data from a field survey in 2001 along the Northeast China transect (NECT), a precipitation gradient,and a short-term simulation experiment under ambient CO2 of 350 μmol mol-1 and doubled CO2 of 700 μmol mol-1with different soil moisture contents of 30%-45%, 45%-60%, and 60%-80% soil water holding capacity, the distributionof soil organic carbon and labile carbon along the NECT, their relationships with precipitation and their responses toCO2 enrichment and soil moisture changes were analyzed. The results indicated that the soil labile carbon along thegradient was significantly related to soil organic carbon (r = 0.993, P < 0.001). The soil labile carbon decreased morerapidly with depth than organic carbon. The soil organic and labile carbon along the gradient decreased with decrease inlongitude in both the topsoils and subsoils, and the coefficient of variation for the labile carbon was greater than that forthe organic carbon. Both the soil organic carbon and labile carbon had significant linear relationships with precipitation,with the correlation coefficient of soil organic carbon being lower (0.677 at P < 0.001) than that of soil labile carbon(0.712 at P < 0.001). In the simulation experiment with doubled and ambient CO2 and different moisture contents, thecoefficient of variation for soil organic carbon was only 1.3%, while for soil labile carbon it was 29.7%. With doubled CO2concentration (700 μmol mol-1), soil labile carbon decreased significantly at 45% to 60% of soil moisture content. Theseindicated that soil labile carbon was relatively more sensitive to environmental changes than soil organic carbon.
基金Under the auspices of National Key Technology Research and Development Program of China(No.2012BAD22B04)CFERN&GENE Award Funds on Ecological PaperNational Natural Science Foundation of China(No.30900208)
文摘Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011809) the National Natural Science Foundation of China (No. 49871044).
文摘Soil labile (biologically active) organic carbon fractions under different crop rotation systems in Jiangsu Province, China, were investigated after 10 years of rotation. The rotation systems, including green manurerice-rice (GmRR), wheat-rice-rice (WRR), wheat-rice (WR) and wheat/corn intercrop-rice (WCR) rotations,were established on paddy soils using a randomized complete block design with three replicates. The total organic carbon (TOC), total nitrogen (TN) and water-soluble organic carbon (WSOC) in the soils under different systems were greater in the GmRR and WRR than in the WR and WCR rotation systems because the soils under triple cropping often received more crop residues than the soils under double cropping. Both the WSOC and the microbial biomass carbon (MBC) contents in the soils of the GmRR rotation system were significantly greater than those in the other crop rotation systems, which was due to the return of green manure to the fields of the GmRR rotation system. The results of a 13C nuclear magnetic resonance (13C-NMR) analysis indicated that the structural characteristics of soil WSOC were similar under the four crop rotation systems with carbohydrates and long-chain aliphatics being the major components. Correlation analysis showed that the content of the WSOC was positively correlated with that of the MBC (P <0.01),and all had significantly positive correlations with TOC and TN. The coefficients of variation (CVs) for WSOC and WSOC/TOC were greater than the other indices (e.g, MBC, TOC and TN), suggesting that WSOC in the soils was more sensitive to these rotation systems. The results above indicated that the soil amended with green manure could not only increase the usable C source for soil microorganisms, but could also enhance soil organic matter content; hence, rotation with green manure would be a good strategy for sustainable agriculture.
文摘The observations of 25-yr long-term experiment in Zhejiang paddy soils showed that the soil organic matter could increase continuously with applying organic manure, and the increase in rate enhanced along with the application rates of organic manure. By mathematical modeling, the soil organic matter increased by 22 kg when 1 t of fresh FYM was applied. The CO2 emission resulting from the mineralization of soil organic matter increased with the increase in the application rate of the organic manure as well as the increase in the root residues. It is expected that the CO2 emission will be at 10.04-21.61 t ha-1 yr-1 when 16.5-49.5 t ha-1 yr-1 of fresh FYM is applied. The soil organic carbon from mineralization and release of applied organic carbon (fresh FYM and root residues) will affect the CO2 concentration in the atmosphere. So, the higher the application rate of organic manure, the more is the fixed organic carbon. The CO2 fixation will be at 1.885-3.463 t ha-1 yr-1 when 16.5-49.5 t ha-1 yr-1 of fresh FYM is applied. Thus, the CO2 fixation will increase by 46.7 kg by applying 1 t fresh FYM. To apply organic manure continuously in rice fields may reduce the contribution to the increase of CO2 concentration in the atmosphere.
文摘This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different size primary particle fractions in hilly regions of western Iran.Three popular land uses in the selected site including natural forest(NF),disturbed forest(DF) and cultivated land(CL) and three slope gradients(0-10 %,S1,10-30 %,S2,and 30-50%,S3) were employed as the basis of soil sampling.A total of 99 soil samples were taken from the 0-10 cm surface layer in the whole studied hilly region studied.The results showed that the POC in the forest land use in all slope gradients was considerably more than the deforested and cultivated lands and the highest value was observed at NF-S1 treatment with 9.13%.The values of PTN were significantly higher in the forest land use and in the down slopes(0.5%) than in the deforested and cultivated counterparts and steep slopes(0.09%) except for the CL land use.The C:N ratios in POC fraction were around 17-18 in the forest land and around 23 in the cultivated land.In forest land,the silt-associated OC was highest among the primary particles.The enrichment factor of SOC,EC,was the highest for POC.For the primary particles,EC of both primary fractions of silt and clay showed following trend for selected land uses and slope gradients:CL> DF> NF and S3 > S2> S1.Slope gradient of landscape significantly affected the OC and TN contents associated with the silt and clay particles,whereas higher OC and TN contents were observed in lower positions and the lowest value was measured in the steep slopes.Overall,the results showed that native forest land improves soil organic carbon storage and can reduce the carbon emission and soil erosion especially in the mountainous regions with high rainfall in west of Iran.