期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MoO_2/GP-GP有机系电化学混合电容器的研究
1
作者 王雪倩 郭欢 +2 位作者 赵博文 李芝灵 刘春玲 《电源技术》 CAS CSCD 北大核心 2017年第3期441-443,456,共4页
以石墨烯(GP)为正极,MoO_2/石墨烯复合材料为负极组装有机系混合电容器,选定0.7~4.5 V为混合电容器的电压范围,对混合电容器的正负极质量比进行优化,实验结果表明,正负极质量比mGP/mMoO_2/GP为3.6时,电容器可以同时获得较高的能量密度... 以石墨烯(GP)为正极,MoO_2/石墨烯复合材料为负极组装有机系混合电容器,选定0.7~4.5 V为混合电容器的电压范围,对混合电容器的正负极质量比进行优化,实验结果表明,正负极质量比mGP/mMoO_2/GP为3.6时,电容器可以同时获得较高的能量密度和功率密度,表现出良好的整体性能。 展开更多
关键词 超级电容器 有机系混合电容器 电极材料
下载PDF
Recent advances in materials and device technologies for aqueous hybrid supercapacitors 被引量:4
2
作者 Qiuyue Gui Deliang Ba +3 位作者 Linpo Li Wenyi Liu Yuanyuan Li Jinping Liu 《Science China Materials》 SCIE EI CAS CSCD 2022年第1期10-31,共22页
Aqueous hybrid supercapacitors(AHSCs)offer potential safety and eco-friendliness compared with conventional electrochemical energy storage devices that use toxic and flammable organic electrolytes.They can serve as th... Aqueous hybrid supercapacitors(AHSCs)offer potential safety and eco-friendliness compared with conventional electrochemical energy storage devices that use toxic and flammable organic electrolytes.They can serve as the bridge between aqueous batteries and aqueous supercapacitors by combining the advantages of high energy of the battery electrode and high power as well as long lifespan of the capacitive electrode.Over the past few decades,extensive research efforts have been devoted to developing advanced materials and fascinating device architectures for AHSCs.However,further development related to the compatibilities between the battery-type electrode and capacitive electrode remains stagnant mainly due to discrepancy encountered in terms of reaction kinetics and capacity.This review focuses on the recent progress made in the field of AHSCs via elucidating the main concepts on the design of battery and capacitive electrodes and emerging electrolytes.In particular,ingenious AHSCs that possess either better flexibility toward materials selection or better device functionality such as those with“dual-ion”energy storage mechanism and non-polarity feature are also discussed.Recent advances and unresolved issues in multivalent ion hybrid devices(in particular,zinc-ion AHSCs)are further outlined.Finally,future research directions and challenges for AHSCs are presented,which are anticipated to deliver higher energy and demonstrate greater multifunctionalities for more breakthrough technology applications. 展开更多
关键词 aqueous hybrid supercapacitors electrode materials electrolytes device technologies
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部