Aim To study the distribution pattern, antineoplastic activity and immunocompetence of a novel organoselenium compound Eb and investigate its in vivo antineoplastic potential. Methods Eb was administered to Kunming ...Aim To study the distribution pattern, antineoplastic activity and immunocompetence of a novel organoselenium compound Eb and investigate its in vivo antineoplastic potential. Methods Eb was administered to Kunming mice (dosage, 0.1 g·kg^(-1)·d^(-1)) intragastrically for 7 successive days. The contents of selenium in heart, liver, spleen, kidneys, lungs, stomach, brain, muscle, and bone were determined by fluorometric method on the eighth day. MTT assay was used to study tumor growth inhibition of Eb in vitro, and lymphocyte transformation, hemolysin formation and phagocytosis assay were used to study its immunocompetence. Results After 7 days′ administration of Eb, the tissue contents of sele-(nium) in liver, spleen, lungs, kidneys, and bone of mice increased, especially those in liver and spleen increased significan-tly, compared with controls; but no significant changes of such contents were found in muscle, heart, brain, and stomach. Eb demonstrated inhibitory effects on human Bel-7402, BGC-823, and Calu-3 cancer cell lines in vitro. Eb also showed ability to enhance lymphocyte transformation and serum hemolysin formation in vitro and increase the phagocytosis of macrophages. Conclusion The validated antitumor and immunostimulatory activities of Eb suggest a hypothesis that Eb may behave as a biological response modifier when used as an antitumor agent. Eb is worthy of further study in developing a new antineoplastic and immunity enhancing agent in the light of its antitumor activity, immunocompetence and specific distribution in liver, lungs, kidneys, bone, and spleen.展开更多
A novel organoselenium compound,WB(1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)]pentane) has indicated anti-tumor activity.Its pharmacokinetic data has never been determined.By using the H22 tumor bearing mous...A novel organoselenium compound,WB(1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)]pentane) has indicated anti-tumor activity.Its pharmacokinetic data has never been determined.By using the H22 tumor bearing mouse model,the tissue distribution of WB after single and four consecutive doses(both were 120 mg/kg/d) was explored.The selenium content of the tissues was used as an indicator of WB absorption,distribution and metabolism.The selenium in the heart,liver, spleen,kidneys,lungs,stomach,pancreas,brain,colon,intestine,testes,plasma,and tumor were determined by generation atomic fluorescence spectrometry(AFS).With single or multiple oral administration of WB,the selenium content significantly increased in the liver,stomach,colon,and intestine.The selenium content in the spleen,lungs,pancreas,testes,plasma and tumor also increased compared with the controls;but no significant changes were found in the brain and kidney.WB and its metabolites distributed predominantly in the colon,liver,stomach and intestine,which resulted in a significant increase in the selenium content in both groups.There was no observed significant accumulation of WB in the vital organs.展开更多
The long-term safe operation of high-power equipment and integrated electronic devices requires efficient thermal management,which in turn increases the energy consumption further.Hence,the sustainable development of ...The long-term safe operation of high-power equipment and integrated electronic devices requires efficient thermal management,which in turn increases the energy consumption further.Hence,the sustainable development of our society needs advanced thermal management with low,even zero,energy consumption.Harvesting water from the atmosphere,followed by moisture desorption to dissipate heat,is an efficient and feasible approach for zero-energy-consumption thermal management.However,current methods are limited by the low absorbance of water,low water vapor transmission rate(WVTR)and low stability,thus resulting in low thermal management capability.In this study,we report an innovative electrospinning method to process hierarchically porous metal–organic framework(MOF)composite fabrics with high-efficiency and zero-energy-consumption thermal management.The composite fabrics are highly loaded with MOF(75 wt%)and their WVTR value can be up to 3138 g m^(-2) d^(-1).The composite fabrics also exhibit stable microstructure and performance.Under a conventional environment(30℃,60%relative humidity),the composite fabrics adsorb water vapor for regeneration within 1.5 h to a saturated value Wsat of 0.614 g g^(-1),and a corresponding equivalent enthalpy of 1705.6 J g^(-1).In the thermal management tests,the composite fabrics show a strong cooling capability and significantly improve the performance of thermoelectric devices,portable storage devices and wireless chargers.These results suggest that hierarchically porous MOF composite fabrics are highly promising for thermal management of intermittent-operation electronic devices.展开更多
文摘Aim To study the distribution pattern, antineoplastic activity and immunocompetence of a novel organoselenium compound Eb and investigate its in vivo antineoplastic potential. Methods Eb was administered to Kunming mice (dosage, 0.1 g·kg^(-1)·d^(-1)) intragastrically for 7 successive days. The contents of selenium in heart, liver, spleen, kidneys, lungs, stomach, brain, muscle, and bone were determined by fluorometric method on the eighth day. MTT assay was used to study tumor growth inhibition of Eb in vitro, and lymphocyte transformation, hemolysin formation and phagocytosis assay were used to study its immunocompetence. Results After 7 days′ administration of Eb, the tissue contents of sele-(nium) in liver, spleen, lungs, kidneys, and bone of mice increased, especially those in liver and spleen increased significan-tly, compared with controls; but no significant changes of such contents were found in muscle, heart, brain, and stomach. Eb demonstrated inhibitory effects on human Bel-7402, BGC-823, and Calu-3 cancer cell lines in vitro. Eb also showed ability to enhance lymphocyte transformation and serum hemolysin formation in vitro and increase the phagocytosis of macrophages. Conclusion The validated antitumor and immunostimulatory activities of Eb suggest a hypothesis that Eb may behave as a biological response modifier when used as an antitumor agent. Eb is worthy of further study in developing a new antineoplastic and immunity enhancing agent in the light of its antitumor activity, immunocompetence and specific distribution in liver, lungs, kidneys, bone, and spleen.
基金National Major Projects on Drug Research and Technology(Grant No.2009ZX09103-032)
文摘A novel organoselenium compound,WB(1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)]pentane) has indicated anti-tumor activity.Its pharmacokinetic data has never been determined.By using the H22 tumor bearing mouse model,the tissue distribution of WB after single and four consecutive doses(both were 120 mg/kg/d) was explored.The selenium content of the tissues was used as an indicator of WB absorption,distribution and metabolism.The selenium in the heart,liver, spleen,kidneys,lungs,stomach,pancreas,brain,colon,intestine,testes,plasma,and tumor were determined by generation atomic fluorescence spectrometry(AFS).With single or multiple oral administration of WB,the selenium content significantly increased in the liver,stomach,colon,and intestine.The selenium content in the spleen,lungs,pancreas,testes,plasma and tumor also increased compared with the controls;but no significant changes were found in the brain and kidney.WB and its metabolites distributed predominantly in the colon,liver,stomach and intestine,which resulted in a significant increase in the selenium content in both groups.There was no observed significant accumulation of WB in the vital organs.
基金supported by the National Natural Science Foundation of China(51877132,U19A20105,and 52003153)the Program of Shanghai Academic Research Leader(21XD1401600)。
文摘The long-term safe operation of high-power equipment and integrated electronic devices requires efficient thermal management,which in turn increases the energy consumption further.Hence,the sustainable development of our society needs advanced thermal management with low,even zero,energy consumption.Harvesting water from the atmosphere,followed by moisture desorption to dissipate heat,is an efficient and feasible approach for zero-energy-consumption thermal management.However,current methods are limited by the low absorbance of water,low water vapor transmission rate(WVTR)and low stability,thus resulting in low thermal management capability.In this study,we report an innovative electrospinning method to process hierarchically porous metal–organic framework(MOF)composite fabrics with high-efficiency and zero-energy-consumption thermal management.The composite fabrics are highly loaded with MOF(75 wt%)and their WVTR value can be up to 3138 g m^(-2) d^(-1).The composite fabrics also exhibit stable microstructure and performance.Under a conventional environment(30℃,60%relative humidity),the composite fabrics adsorb water vapor for regeneration within 1.5 h to a saturated value Wsat of 0.614 g g^(-1),and a corresponding equivalent enthalpy of 1705.6 J g^(-1).In the thermal management tests,the composite fabrics show a strong cooling capability and significantly improve the performance of thermoelectric devices,portable storage devices and wireless chargers.These results suggest that hierarchically porous MOF composite fabrics are highly promising for thermal management of intermittent-operation electronic devices.