When gasoline is burned to power an automotive engine, a portion of the fuel remains unburned or is partially burned and leaves the engine as hydrocarbon and oxygenated compounds. In addition, a small portion of the f...When gasoline is burned to power an automotive engine, a portion of the fuel remains unburned or is partially burned and leaves the engine as hydrocarbon and oxygenated compounds. In addition, a small portion of the fuel can escape the vehicle through evaporation. Changes in alkanes, olefins and aromatics each affect emissions differently, which could complicate control strategies for air pollution. In this study, we collected 31 gasoline samples over five provinces and cities(Beijing, Tianjin, Hebei, Shandong, and Shaanxi) in North China between 2012 and 2013. The organic composition of the gasoline samples was analyzed using the gas chromatography-mass spectrometry(GC-MS) method, and the aniline compounds were analyzed by solvent extraction and the GC-MS method. The ratios of alkanes, aromatics, olefins and other organic compounds in gasoline were 40.6%, 38.1%, 12.9% and 8.4%, respectively. The aromatic and benzene exceedances were 15 and 8 based on the China's gasoline standards(III), and they accounted for 48.4% and 25.8% of all the gasoline samples, respectively. Strong carcinogen aniline compounds were detected in all 31 samples, and the content of aniline compounds in 3 samples exceeded 1%. The high proportion of aromatics and olefins in the gasoline increased the emissions of carbon monoxide(CO) and toxics, as well as the atmospheric photochemical reactivity of exhaust emissions, which could hasten the formation of secondary pollutants. Our results are helpful for redefining government strategies to control air pollution in North China and relevant for developing new refining technology throughout China.展开更多
基金supported by Chinese Academy of Sciences Strategic Priority Research Program Grant(XDB05020000,XDA05100100)the National Natural Science Foundation of China(41230642,41021004,41203053)
文摘When gasoline is burned to power an automotive engine, a portion of the fuel remains unburned or is partially burned and leaves the engine as hydrocarbon and oxygenated compounds. In addition, a small portion of the fuel can escape the vehicle through evaporation. Changes in alkanes, olefins and aromatics each affect emissions differently, which could complicate control strategies for air pollution. In this study, we collected 31 gasoline samples over five provinces and cities(Beijing, Tianjin, Hebei, Shandong, and Shaanxi) in North China between 2012 and 2013. The organic composition of the gasoline samples was analyzed using the gas chromatography-mass spectrometry(GC-MS) method, and the aniline compounds were analyzed by solvent extraction and the GC-MS method. The ratios of alkanes, aromatics, olefins and other organic compounds in gasoline were 40.6%, 38.1%, 12.9% and 8.4%, respectively. The aromatic and benzene exceedances were 15 and 8 based on the China's gasoline standards(III), and they accounted for 48.4% and 25.8% of all the gasoline samples, respectively. Strong carcinogen aniline compounds were detected in all 31 samples, and the content of aniline compounds in 3 samples exceeded 1%. The high proportion of aromatics and olefins in the gasoline increased the emissions of carbon monoxide(CO) and toxics, as well as the atmospheric photochemical reactivity of exhaust emissions, which could hasten the formation of secondary pollutants. Our results are helpful for redefining government strategies to control air pollution in North China and relevant for developing new refining technology throughout China.