[ Objective] The physiological radiation spectrum and fruit quality in different canopies of sweet cherry tree were studied. [ Method] Opti- cal fiber spectrum was applied to determine the physiological radiation spec...[ Objective] The physiological radiation spectrum and fruit quality in different canopies of sweet cherry tree were studied. [ Method] Opti- cal fiber spectrum was applied to determine the physiological radiation spectrum in different canopies of sweet cherry tree. The fruit quality in differ- ent canopies was determined. [Result] The results showed that from the top part to the lower part and from the outer part to inner part of sweet cherry canopy, Me physiological radiation intensity and ratio of short wave light reduced significantly, while ratio of long wave light increased. Fruit mass, Vc, TSS and total sugar content were significantly decreasing, while organic acid content increasing, but the fruit edible percent was similar. Furthermore, the physiological radiation intensity was strong, fruit mass, TSS, Vc and total sugar content increased, but organic acid content re- duced. [ Condusion] The higher and bigger canopy of sweet cherry, the poor and lower physiological radiation intensity, photosynthesis accumula- tion and fruit quality. The study provided theoretical foundation and reference for the trim of sweet cherry.展开更多
The main objectives were to (1) calculate the total volatile organic compounds (TVOCs) inhalation dose, (2) analyze the proportions of human’s inhaled contaminant dose from different sources, and (3) present a newly ...The main objectives were to (1) calculate the total volatile organic compounds (TVOCs) inhalation dose, (2) analyze the proportions of human’s inhaled contaminant dose from different sources, and (3) present a newly defined ratio of relative inhalation dose level (RIDL) to assess indoor air quality (IAQ). A user defined function based on CFD (computational fluid dynamics) was developed, which integrated human motion model with TVOCs emission model in a high sidewall air supply ventilation mode. Based on simulation results of 10 cases, it is shown that the spatial concentration distribution of TVOCs is affected by human motion. TVOCs diffusion characteristic of building material is the most effective way to impact the TVOCs inhalation dose. From the RIDL index, case A-2 has the most serious IAQ problem, while case D-1 is of the best IAQ.展开更多
基金Supported by National Science and Technology Achievement Transition Program(2010GB2F000408)the Undergraduates Innovating Experimentation Project of Sichuan Agricultural University
文摘[ Objective] The physiological radiation spectrum and fruit quality in different canopies of sweet cherry tree were studied. [ Method] Opti- cal fiber spectrum was applied to determine the physiological radiation spectrum in different canopies of sweet cherry tree. The fruit quality in differ- ent canopies was determined. [Result] The results showed that from the top part to the lower part and from the outer part to inner part of sweet cherry canopy, Me physiological radiation intensity and ratio of short wave light reduced significantly, while ratio of long wave light increased. Fruit mass, Vc, TSS and total sugar content were significantly decreasing, while organic acid content increasing, but the fruit edible percent was similar. Furthermore, the physiological radiation intensity was strong, fruit mass, TSS, Vc and total sugar content increased, but organic acid content re- duced. [ Condusion] The higher and bigger canopy of sweet cherry, the poor and lower physiological radiation intensity, photosynthesis accumula- tion and fruit quality. The study provided theoretical foundation and reference for the trim of sweet cherry.
基金Projects(2006BAJ02A08, 2006BAJ02A05) supported by the National Science and Technology Pillar Program Project during the 11th Five-Year Plan PeriodProject(2007-209) supported by the Excellent Youth Teacher of Ministry of Education of China
文摘The main objectives were to (1) calculate the total volatile organic compounds (TVOCs) inhalation dose, (2) analyze the proportions of human’s inhaled contaminant dose from different sources, and (3) present a newly defined ratio of relative inhalation dose level (RIDL) to assess indoor air quality (IAQ). A user defined function based on CFD (computational fluid dynamics) was developed, which integrated human motion model with TVOCs emission model in a high sidewall air supply ventilation mode. Based on simulation results of 10 cases, it is shown that the spatial concentration distribution of TVOCs is affected by human motion. TVOCs diffusion characteristic of building material is the most effective way to impact the TVOCs inhalation dose. From the RIDL index, case A-2 has the most serious IAQ problem, while case D-1 is of the best IAQ.