Terrestrial organic matter(TOM) is an important component of marine sedimentary OM, and revealing the origins and transport mechanisms of TOM to the East China Sea(ECS) is important for understanding regional carbon c...Terrestrial organic matter(TOM) is an important component of marine sedimentary OM, and revealing the origins and transport mechanisms of TOM to the East China Sea(ECS) is important for understanding regional carbon cycle. A novel approach combining molecular proxies and compound-specific carbon isotopes is used to quantitatively constrain the origins and transport mechanisms of TOM in surface sediments from the ECS shelf. The content of terrestrial biomarkers of(C_(27)+C_(29)+C_(31)) n-alkanes(52 to 580 ng g^(-1)) revealed a seaward decreasing trend, the δ^(13)CTOC values(-20.6‰ to-22.7‰) were more negative near the coast, and the TMBR(terrestrial and marine biomarker ratio) values(0.06 to 0.40) also revealed a seaward decreasing trend. These proxies all indicated more TOM(up to 48%) deposition in the coastal areas. The Alkane Index, the ratio of C_(29)/(C_(29)+C_(31)) n-alkanes indicated a higher proportion of grass vegetation in the coastal area; While the δ13C values of C_(29) n-alkane(-_(29).3‰ to-33.8‰) indicated that terrestrial plant in the sediments of the ECS shelf were mainly derived from C_3 plants. Cluster analysis afforded detailed estimates of different-sourced TOM contributions and transport mechanisms. TOM in the Zhejiang-Fujian coastal area was mostly delivered by the Changjiang River, and characterized by higher %TOM(up to 48%), higher %C_3 plant OM(68%-85%) and higher grass plant OM(56%-61%); TOM in the mid-shelf area was mostly transported by aerosols, and characterized by low %TOM(less than 17%), slightly lower C_3 plant OM(56%-72%) and lower grass plant OM(49%-55%).展开更多
The sources and enrichment of organic matter in a sediment core in the first member of the Xiagou Formation(K_1g^1) from the Chang 2-2 borehole of the Jiuquan Basin,NW China,have been examined using Rock-Eval,maceral,...The sources and enrichment of organic matter in a sediment core in the first member of the Xiagou Formation(K_1g^1) from the Chang 2-2 borehole of the Jiuquan Basin,NW China,have been examined using Rock-Eval,maceral,carbon isotopes and biomarker data.This data indicates that highly variable organic matter sources and preservation conditions in response to climate change.TOC content,HI,and δ^(13)C value were strongly correlated with the abundance of gammacerane,woody organic matter content,steranes/hopanes ratio,and C_(29) sterane content.This correlation demonstrates the importance that the control of the salinity of the depositional environment and organic matter sources can have upon the enrichment,type,and carbon isotopic composition of organic matter.In the Jiuquan Basin's relatively high temperature and arid climate,high salinity lakes with high primary productivity of algae,planktons,and bacteria,and good organic matter preservation conditions(anoxic bottom water) resulted in the enrichment of isotopically-light algae-bacterial organic matter.In the Jiuquan Basin's regions with a relatively low temperature and wet climate,fresh lakes with low primary productivity of algae,planktons,and bacteria received significant terrigenous high plants input,resulting in the deposition of a low abundance of isotopically heavier terrestrial organic matter.展开更多
Allochthonous organic matter plays an important role in nutrient cycling and energy mobilization in freshwater ecosystems. However, the subsidies of this carbon source in floodplain ecosystems have not yet well unders...Allochthonous organic matter plays an important role in nutrient cycling and energy mobilization in freshwater ecosystems. However, the subsidies of this carbon source in floodplain ecosystems have not yet well understood. We used a Bayesian mixing model and stable isotopes (613C and 815N) of primary food resources and dominant molluscs species, to estimate the relative importance of allochthonous carbon sources for consumers in a representative sub-lake of Poyang Lake during a prolonged dry season. Our study inferred that terrestrial-derived carbon from Carex spp. could be the primary contributor to snails and mussels in Dahuchi Lake. The mean percentage of allochthonous food resources accounted for 35%- 50% of the C incorporated by these consumers. Seston was another important energy sources for benthic consumers. However, during the winter and low water-level period, benthic algae and submerged vegetation contributed less carbon to benthic consumers. Our data highlighted the importance of terrestrial organic carbon to benthic consumers in the wetlands of Poyang Lake during the prolonged dry period. Further, our results provided a perspective that linkages between terrestrial and aquatic ecosystems might be facilitated by wintering geese via their droppings.展开更多
Human activity-induced eutrophication and harmful algal blooms are main causes of the expansion of the hypoxic zone in the Changjiang Estuary. Among the many changes in biogeochemical processes, anaerobic ammonium oxi...Human activity-induced eutrophication and harmful algal blooms are main causes of the expansion of the hypoxic zone in the Changjiang Estuary. Among the many changes in biogeochemical processes, anaerobic ammonium oxidation(anammox) is proposed to play an important role in the nitrogen cycle in hypoxic areas. Ladderane lipids have been used as biomarkers to indicate anammox activity in ecosystems, but the origins of anammox bacteria and ladderanes in suspended particulates are still unclear. In this study, we report the results of a suite of biomarker analyses of suspended particulates across a salinity gradient of the Changjiang Estuary in both the spring and summer to evaluate the origins of the ladderanes and their potential as proxies for anammox activity and hypoxia. The spatio-temporal variations in terrestrial biomarkers(n-alkanes and n-alkanols), marine biomarkers(brassicasterol and dinosterol), and the Terrestrial and Marine Biomarker Ratio and Branched and Isoprenoid Tetraether indices reveal that marine organic matter was dominant in the particulates in both the spring(55%) and summer(86%) seasons. Correlations with both marine and terrestrial biomarkers suggest that ladderanes were mainly produced in the water column, and therefore that ladderane concentrations in suspended particulates in the Changjiang Estuary mainly reflect anammox activity in the water column, although changes in anammox bacterial assemblages may also have played a role in ladderane concentrations. Overall, ladderane results suggest that anammox activity was widespread in the Changjiang Estuary; but higher ladderane concentrations in the summer(especially in the upwelling zone) were correlated with lower dissolved oxygen concentrations, which suggest that they are useful proxies for hypoxia.展开更多
The adsorption of organic matter(OM)onto clay minerals has long been considered as a significant way of OM preservation in source rock.Here we analyzed the relationship between OM and the specific surface area(SSA)of ...The adsorption of organic matter(OM)onto clay minerals has long been considered as a significant way of OM preservation in source rock.Here we analyzed the relationship between OM and the specific surface area(SSA)of <2μm clay size fraction isolated from 13 source rock cores collected from Dongying depression.Rock-Eval pyrolysis and N2 adsorption experiment were employed to probe the characteristics of OM and SSA(denoted SBET)in samples before and after OM extraction using trichloromethane.The results indicate that various kinds of OM occurrence coexist in clay size fraction and their contributions to hydrocarbon are different in each period of OM evolution.The occurrence and amount of OM affect the S BET of clay size fraction,and a nonlinear negative correlation between total organic carbon(TOC)and S BET can be recognized.The soluble OM(chloroform extract "A"),mainly stored in the pore space of clay size fraction,shows a negative correlation in amount with S BET.Our data also indicate that free hydrocarbon(S1)was stored mainly in the pore space and/or the surface of clay size fraction,whereas pyrolysis hydrocarbon(S2)was mingled mainly with clay minerals.Therefore,to understand various OM occurrences and their relationship with SBET in the clay size fraction is significant in the study of generation,accumulation,and migration of hydrocarbon in muddy source rock.展开更多
基金the Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources (No. MRE201301)the National Natural Science Foundation of China (No. 41506087)the ‘111’ Project (No. B13030)
文摘Terrestrial organic matter(TOM) is an important component of marine sedimentary OM, and revealing the origins and transport mechanisms of TOM to the East China Sea(ECS) is important for understanding regional carbon cycle. A novel approach combining molecular proxies and compound-specific carbon isotopes is used to quantitatively constrain the origins and transport mechanisms of TOM in surface sediments from the ECS shelf. The content of terrestrial biomarkers of(C_(27)+C_(29)+C_(31)) n-alkanes(52 to 580 ng g^(-1)) revealed a seaward decreasing trend, the δ^(13)CTOC values(-20.6‰ to-22.7‰) were more negative near the coast, and the TMBR(terrestrial and marine biomarker ratio) values(0.06 to 0.40) also revealed a seaward decreasing trend. These proxies all indicated more TOM(up to 48%) deposition in the coastal areas. The Alkane Index, the ratio of C_(29)/(C_(29)+C_(31)) n-alkanes indicated a higher proportion of grass vegetation in the coastal area; While the δ13C values of C_(29) n-alkane(-_(29).3‰ to-33.8‰) indicated that terrestrial plant in the sediments of the ECS shelf were mainly derived from C_3 plants. Cluster analysis afforded detailed estimates of different-sourced TOM contributions and transport mechanisms. TOM in the Zhejiang-Fujian coastal area was mostly delivered by the Changjiang River, and characterized by higher %TOM(up to 48%), higher %C_3 plant OM(68%-85%) and higher grass plant OM(56%-61%); TOM in the mid-shelf area was mostly transported by aerosols, and characterized by low %TOM(less than 17%), slightly lower C_3 plant OM(56%-72%) and lower grass plant OM(49%-55%).
基金financially supported by CNPC Major Science and Technology Project (NO. 2012E330)CNPC Fourth Petroleum Resources Assessment (NO. 2013E-050209)
文摘The sources and enrichment of organic matter in a sediment core in the first member of the Xiagou Formation(K_1g^1) from the Chang 2-2 borehole of the Jiuquan Basin,NW China,have been examined using Rock-Eval,maceral,carbon isotopes and biomarker data.This data indicates that highly variable organic matter sources and preservation conditions in response to climate change.TOC content,HI,and δ^(13)C value were strongly correlated with the abundance of gammacerane,woody organic matter content,steranes/hopanes ratio,and C_(29) sterane content.This correlation demonstrates the importance that the control of the salinity of the depositional environment and organic matter sources can have upon the enrichment,type,and carbon isotopic composition of organic matter.In the Jiuquan Basin's relatively high temperature and arid climate,high salinity lakes with high primary productivity of algae,planktons,and bacteria,and good organic matter preservation conditions(anoxic bottom water) resulted in the enrichment of isotopically-light algae-bacterial organic matter.In the Jiuquan Basin's regions with a relatively low temperature and wet climate,fresh lakes with low primary productivity of algae,planktons,and bacteria received significant terrigenous high plants input,resulting in the deposition of a low abundance of isotopically heavier terrestrial organic matter.
基金Supported by the National Natural Science Foundation of China(Nos.41471088,41301077)
文摘Allochthonous organic matter plays an important role in nutrient cycling and energy mobilization in freshwater ecosystems. However, the subsidies of this carbon source in floodplain ecosystems have not yet well understood. We used a Bayesian mixing model and stable isotopes (613C and 815N) of primary food resources and dominant molluscs species, to estimate the relative importance of allochthonous carbon sources for consumers in a representative sub-lake of Poyang Lake during a prolonged dry season. Our study inferred that terrestrial-derived carbon from Carex spp. could be the primary contributor to snails and mussels in Dahuchi Lake. The mean percentage of allochthonous food resources accounted for 35%- 50% of the C incorporated by these consumers. Seston was another important energy sources for benthic consumers. However, during the winter and low water-level period, benthic algae and submerged vegetation contributed less carbon to benthic consumers. Our data highlighted the importance of terrestrial organic carbon to benthic consumers in the wetlands of Poyang Lake during the prolonged dry period. Further, our results provided a perspective that linkages between terrestrial and aquatic ecosystems might be facilitated by wintering geese via their droppings.
基金supported by the National Natural Science Foundation of China (Grant No. 41221004)the National Basic Research Program of China (Grant No. 2010CB428901)the "111" Project (Grant No. B13030)
文摘Human activity-induced eutrophication and harmful algal blooms are main causes of the expansion of the hypoxic zone in the Changjiang Estuary. Among the many changes in biogeochemical processes, anaerobic ammonium oxidation(anammox) is proposed to play an important role in the nitrogen cycle in hypoxic areas. Ladderane lipids have been used as biomarkers to indicate anammox activity in ecosystems, but the origins of anammox bacteria and ladderanes in suspended particulates are still unclear. In this study, we report the results of a suite of biomarker analyses of suspended particulates across a salinity gradient of the Changjiang Estuary in both the spring and summer to evaluate the origins of the ladderanes and their potential as proxies for anammox activity and hypoxia. The spatio-temporal variations in terrestrial biomarkers(n-alkanes and n-alkanols), marine biomarkers(brassicasterol and dinosterol), and the Terrestrial and Marine Biomarker Ratio and Branched and Isoprenoid Tetraether indices reveal that marine organic matter was dominant in the particulates in both the spring(55%) and summer(86%) seasons. Correlations with both marine and terrestrial biomarkers suggest that ladderanes were mainly produced in the water column, and therefore that ladderane concentrations in suspended particulates in the Changjiang Estuary mainly reflect anammox activity in the water column, although changes in anammox bacterial assemblages may also have played a role in ladderane concentrations. Overall, ladderane results suggest that anammox activity was widespread in the Changjiang Estuary; but higher ladderane concentrations in the summer(especially in the upwelling zone) were correlated with lower dissolved oxygen concentrations, which suggest that they are useful proxies for hypoxia.
基金supported by National Natural Science Foundation of China (Grant No. 41072089)National Oil and Gas Special Fund (Grant No.2011ZX05006-001)Program of the State Key Laboratory of Oil-gas of Petroleum University (Beijing) (Grant No. P08026)
文摘The adsorption of organic matter(OM)onto clay minerals has long been considered as a significant way of OM preservation in source rock.Here we analyzed the relationship between OM and the specific surface area(SSA)of <2μm clay size fraction isolated from 13 source rock cores collected from Dongying depression.Rock-Eval pyrolysis and N2 adsorption experiment were employed to probe the characteristics of OM and SSA(denoted SBET)in samples before and after OM extraction using trichloromethane.The results indicate that various kinds of OM occurrence coexist in clay size fraction and their contributions to hydrocarbon are different in each period of OM evolution.The occurrence and amount of OM affect the S BET of clay size fraction,and a nonlinear negative correlation between total organic carbon(TOC)and S BET can be recognized.The soluble OM(chloroform extract "A"),mainly stored in the pore space of clay size fraction,shows a negative correlation in amount with S BET.Our data also indicate that free hydrocarbon(S1)was stored mainly in the pore space and/or the surface of clay size fraction,whereas pyrolysis hydrocarbon(S2)was mingled mainly with clay minerals.Therefore,to understand various OM occurrences and their relationship with SBET in the clay size fraction is significant in the study of generation,accumulation,and migration of hydrocarbon in muddy source rock.