期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于光谱反射率的两种土壤有机质数学建模方法对比(英文) 被引量:6
1
作者 张沛 李毅 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第3期903-910,共8页
已有土壤有机质的光谱预测模型其适用性受建模样本的采样尺度、土壤类型及光谱参数限制,需要在大尺度及范围上进一步检验适用性,并比较分析不同建模方法的建模效果以寻求适用性更好、精度更高的定量模型。在黑河上游大尺度范围采得225... 已有土壤有机质的光谱预测模型其适用性受建模样本的采样尺度、土壤类型及光谱参数限制,需要在大尺度及范围上进一步检验适用性,并比较分析不同建模方法的建模效果以寻求适用性更好、精度更高的定量模型。在黑河上游大尺度范围采得225个土壤样品,进行了土壤有机质(SOC)及光谱反射率测定后将样本划分为建模集(180个土样)与验证集(45个土样)。将土壤光谱反射率(R)变换处理后得到连续统去除(CR)、倒数(REC)、倒数之对数(LR)、一阶微分(FDR)及Kubelka-Munck变换系数共6种指标,针对建模集分别采用逐步线性回归与偏最小二乘回归方法建立12种光谱指标与SOC的数学模型,并采用验证集进行模型预测效果评价。结果表明:(1)采用逐步线性回归或偏最小二乘回归方法建模,LR指标对SOC变化的解释效果都是最好,是SOC的最优预测因子。(2)基于LR指标建立的SOC模型中,采用偏最小二乘回归模型比逐步线性回归模型的预测精度更好,相较于黑河上游已有的经验模型,偏最小二乘回归法建立的模型的预测效果也更好。(3)采用本实验的225个土壤样品对比验证了黑河上游仅有的SOC模型。该模型的SOC预测值与实测值通过了均值T检验且Pearson相关系数达0.826,表明在局部典型区域建立的SOC预测模型,可以应用到更大尺度上的土壤有机质预测研究。 展开更多
关键词 黑河上游 逐步线性回归 偏最小二乘回归 有机质预测模型 光谱
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部