A series of UiO-66-NH2/Ag2CO3 Z-scheme heterojunctions were prepared by a simple ion-exchange-solution method using UiO-66-NH2 and semiconductor Ag2CO3 as precursors.The photocatalytic activities of UAC-X(UAC-20,50,10...A series of UiO-66-NH2/Ag2CO3 Z-scheme heterojunctions were prepared by a simple ion-exchange-solution method using UiO-66-NH2 and semiconductor Ag2CO3 as precursors.The photocatalytic activities of UAC-X(UAC-20,50,100,150,200)Z-scheme heterojunctions toward the hexavalent chromium(Cr(VI))reduction and UAC-100 toward oxidative degradation of four organic dyes like rhodamine B(RhB),methyl orange(MO),congo red(CR),and methylene blue(MB)under visible light irradiation were investigated.The effects of different pH(pH=2,3,4,6,8),small organic acids(citric acid,tartaric acid,and oxalic acid),and foreign ions(ions in tap water and surface water)on Cr(VI)reduction were explored.The results revealed that the UAC-100 heterojunctions displayed more remarkable Cr(VI)reduction performance than the pristine UiO-66-NH2 and Ag2CO3,resulting from the improved separation of photo-induced electrons and holes.The enhanced photocatalytic activity of UAC-100 was further confirmed by the photoluminescence measurement,electrochemical analysis,and active species trapping experiments.After four cycles’experiments,the photocatalytic Cr(VI)reduction efficiency over UAC-100 was still over 99%,which exhibited that UAC-100 had excellent reusability and stability.Finally,the corresponding photocatalytic reaction mechanism was proposed and tested.展开更多
Cobalt-based phosphate/phosphonates are a class of promising water oxidation catalysts at neutralpH.Herein,we reported a facile hydrothermal synthesis of various nanostructured cobalt phe-nylphosphonates.It is found t...Cobalt-based phosphate/phosphonates are a class of promising water oxidation catalysts at neutralpH.Herein,we reported a facile hydrothermal synthesis of various nanostructured cobalt phe-nylphosphonates.It is found that the number of hydroxyl group of structure-directing reagent iscrucial for the construction of 3D hierarchical structures including hierarchical nanosheet flow-er-like assemblies and nanothorn microsphere.These samples were characterized by scanningelectron microscopy,transmission electron microscopy,X-ray diffraction,infrared,and X-ray pho-toelectron spectroscopy techniques.They can act as highly efficient electrocatalysts for the oxygenevolution reaction at neutral pH.Among these,hierarchical cobalt phenylphosphonate nanothornflowers present excellent performance,affording a current density of 1 mA cm^-2 required a smalloverpotential of 393 mV.This work offers a new clue to develop high-performance metal phospho-nate/phosphate catalysts toward electrochemical water oxidation.展开更多
The influences of kinds and level of catalyst, time of decomposition reaction on the distribution of dibasic acid and apparent yield of adipic acid were researched; the acidic washing waste water (BI waste water) pr...The influences of kinds and level of catalyst, time of decomposition reaction on the distribution of dibasic acid and apparent yield of adipic acid were researched; the acidic washing waste water (BI waste water) producing from the equipment of cyclohexane oxidation by air was as stuff, the component of products by decomposed and oxidated in different conditions were analysed. It indicated that in the presence of cobalt salt the apparent yield of adipic acid was upto 10%-12% for the total BI waste water after the concentrated BI waste water refluxed for two hours, and then oxidated by nitric acid.展开更多
Antimicrobial and photocatalytic effect of silicate and silicone paints were tested. Silicate paints are based on water styrene-acrylic dispersion with mineral binder into form of potassium water glass. Silicone paint...Antimicrobial and photocatalytic effect of silicate and silicone paints were tested. Silicate paints are based on water styrene-acrylic dispersion with mineral binder into form of potassium water glass. Silicone paints are based on water acrylic dispersion with silicone resin emulsion. Silicate and silicone paints were formulated with photocatalytic active nanooxides TiO2 and ZnO. Photocatalytic efficiency of coatings was measured as an absorbance change of organic dye Orange II solution at a wavelength of 485 nm. Antimicrobial properties of coatings were tested using agar plate methods. As test microorganisms Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Penicillium chrysogenum and Aspergillus niger suspension (density 10^6 cells/mL) were used. The inhibition effect of tested coatings and inhibitory zones were evaluated after incubation. Coatings containing nanoparticles of titanium dioxide and zinc oxide showed antimicrobial activity against the test microorganisms. Whereas coating with zinc oxide nanoparticles successfully inhibited the growth of both bacteria and fungi, the photocatalytic nanoparticles of titanium dioxide inhibited bacteria but not fungi (weak inhibition was observed).展开更多
An improved acetylcholinesterase liquid crystal(LC) biosensor has been developed for the identification of organophosphates(OPs) by using a reactivator. When the acetylcholinesterases(AChEs) inhibited by different kin...An improved acetylcholinesterase liquid crystal(LC) biosensor has been developed for the identification of organophosphates(OPs) by using a reactivator. When the acetylcholinesterases(AChEs) inhibited by different kinds of OPs are reactived by a reactivator, the catalytic activity of AChEs can be recovered with different activation efficiency because of the different phosphorylation structures formed in the inhibited AChEs. Accordingly, the reactived AChEs can catalyze the hydrolysis of acetylthiocholine to generate thiocholine product in different degrees, which will result in different catalytic growth of AuNPs and further form distinct orientational response of LCs. Based on such a reactivation mechanism, the AChE LC biosensor with a simple, rapid and visual procedure achieves an obvious identification of three OPs pesticides, methamidophos, trichlorfon and paraoxon, by using a pralidoxime reactivator.展开更多
Precise control of the size and morphology of metal-organic frameworks(MOFs) presents an important direction for extending these inorganic-organic materials to many more advanced applications. However, because of the ...Precise control of the size and morphology of metal-organic frameworks(MOFs) presents an important direction for extending these inorganic-organic materials to many more advanced applications. However, because of the limit of the crystal-growth rule and mechanism, good-control of the size and morphology of MOFs remains challenging. In this contribution, an iron-terephthalic acid metal-organic framework with different shapes(octahedron, spindle and bipyramidal hexagonal) was easily and reproducibly synthesized via a solvothermal method. Sodium acetate and glycerol were used as modulators. Mechanism studies showed that the crystal nucleation rate and orientational growth both play important roles in determining the final shape of the MOFs. Further investigations showed that the as prepared MOFs exhibit shape-dependent catalytic activities, which means that MOFs can be designed to perform different catalytic functions. This investigation not only provides an effective guideline for the precise control of the size and morphology of metal-organic frameworks, but also extends MOFs to much more advanced applications in terms of catalyst chemistry.展开更多
The asymmetric allylic alkylation reaction of sulfonylimidates with various Morita-Baylis-Hillman (MBH) carbonates was accomplished by the catalysis of commercially available cinchona alkaloids catalyst (DHQD)2AQN.The...The asymmetric allylic alkylation reaction of sulfonylimidates with various Morita-Baylis-Hillman (MBH) carbonates was accomplished by the catalysis of commercially available cinchona alkaloids catalyst (DHQD)2AQN.The corresponding allylic alkylation products were obtained in good yields with high stereoselectivities (up to 99% ee,89:11 dr).展开更多
Recent world events have emphasized the need to develop innovative, functional materials that will safely neutralize chemical warfare (CW) agents in situ to protect military personnel and civilians from dermal expos...Recent world events have emphasized the need to develop innovative, functional materials that will safely neutralize chemical warfare (CW) agents in situ to protect military personnel and civilians from dermal exposure. Here, we demonstrate the efficacy of a novel, proof-of-concept design for a Cu-containing catalyst, chemically bonded to a single-wall carbon nanotube (SWCNT) structural support, to effectively degrade an organophosphate simulant. SWCNTs have high tensile strength and are flexible and light-weight, which make them a desirable structural component for unique, fabric-like materials. This study aims to develop a self-decontaminating, carbon nanotube-derived material that can ultimately be incorporated into a wearable fabric or protective material to minimize dermal exposure to organophosphate nerve agents and to prevent accidental exposure during decontamination procedures. Carboxylated SWCNTs were functionalized with a polymer, which contained Cu-chelating bipyridine groups, and their catalytic activity against an organophosphate simulant was measured over time. The catalytically active, functionalized nanomaterial was characterized using X-ray fluorescence and Raman spectroscopy. Assuming zeroth-order reaction kinetics, the hydrolysis rate of the organophosphate simulant, as monitored by UV-vis absorption in the presence of the catalytically active nanomaterial, was 63 times faster than the uncatalyzed hydrolysis rate for a sample containing only carboxylated SWCNTs or a control sample containing no added nanotube materials.展开更多
基金supported by the National Natural Science Foundation of China(51878023,51578034)Great Wall Scholars Training Program Project of Beijing Municipality Universities(CIT&TCD20180323)+2 种基金Project of Construction of Innovation Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality(IDHT20170508)Beijing Talent Project(2018A35)BUCEA Post Graduate Innovation Project(PG2019039)~~
文摘A series of UiO-66-NH2/Ag2CO3 Z-scheme heterojunctions were prepared by a simple ion-exchange-solution method using UiO-66-NH2 and semiconductor Ag2CO3 as precursors.The photocatalytic activities of UAC-X(UAC-20,50,100,150,200)Z-scheme heterojunctions toward the hexavalent chromium(Cr(VI))reduction and UAC-100 toward oxidative degradation of four organic dyes like rhodamine B(RhB),methyl orange(MO),congo red(CR),and methylene blue(MB)under visible light irradiation were investigated.The effects of different pH(pH=2,3,4,6,8),small organic acids(citric acid,tartaric acid,and oxalic acid),and foreign ions(ions in tap water and surface water)on Cr(VI)reduction were explored.The results revealed that the UAC-100 heterojunctions displayed more remarkable Cr(VI)reduction performance than the pristine UiO-66-NH2 and Ag2CO3,resulting from the improved separation of photo-induced electrons and holes.The enhanced photocatalytic activity of UAC-100 was further confirmed by the photoluminescence measurement,electrochemical analysis,and active species trapping experiments.After four cycles’experiments,the photocatalytic Cr(VI)reduction efficiency over UAC-100 was still over 99%,which exhibited that UAC-100 had excellent reusability and stability.Finally,the corresponding photocatalytic reaction mechanism was proposed and tested.
文摘Cobalt-based phosphate/phosphonates are a class of promising water oxidation catalysts at neutralpH.Herein,we reported a facile hydrothermal synthesis of various nanostructured cobalt phe-nylphosphonates.It is found that the number of hydroxyl group of structure-directing reagent iscrucial for the construction of 3D hierarchical structures including hierarchical nanosheet flow-er-like assemblies and nanothorn microsphere.These samples were characterized by scanningelectron microscopy,transmission electron microscopy,X-ray diffraction,infrared,and X-ray pho-toelectron spectroscopy techniques.They can act as highly efficient electrocatalysts for the oxygenevolution reaction at neutral pH.Among these,hierarchical cobalt phenylphosphonate nanothornflowers present excellent performance,affording a current density of 1 mA cm^-2 required a smalloverpotential of 393 mV.This work offers a new clue to develop high-performance metal phospho-nate/phosphate catalysts toward electrochemical water oxidation.
文摘The influences of kinds and level of catalyst, time of decomposition reaction on the distribution of dibasic acid and apparent yield of adipic acid were researched; the acidic washing waste water (BI waste water) producing from the equipment of cyclohexane oxidation by air was as stuff, the component of products by decomposed and oxidated in different conditions were analysed. It indicated that in the presence of cobalt salt the apparent yield of adipic acid was upto 10%-12% for the total BI waste water after the concentrated BI waste water refluxed for two hours, and then oxidated by nitric acid.
文摘Antimicrobial and photocatalytic effect of silicate and silicone paints were tested. Silicate paints are based on water styrene-acrylic dispersion with mineral binder into form of potassium water glass. Silicone paints are based on water acrylic dispersion with silicone resin emulsion. Silicate and silicone paints were formulated with photocatalytic active nanooxides TiO2 and ZnO. Photocatalytic efficiency of coatings was measured as an absorbance change of organic dye Orange II solution at a wavelength of 485 nm. Antimicrobial properties of coatings were tested using agar plate methods. As test microorganisms Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Penicillium chrysogenum and Aspergillus niger suspension (density 10^6 cells/mL) were used. The inhibition effect of tested coatings and inhibitory zones were evaluated after incubation. Coatings containing nanoparticles of titanium dioxide and zinc oxide showed antimicrobial activity against the test microorganisms. Whereas coating with zinc oxide nanoparticles successfully inhibited the growth of both bacteria and fungi, the photocatalytic nanoparticles of titanium dioxide inhibited bacteria but not fungi (weak inhibition was observed).
基金supported by the International Scientific and Technological Cooperation Projects of China(2012DFR40480)the National Natural Science Foundation of China(21175037,21277042 and J1210040)
文摘An improved acetylcholinesterase liquid crystal(LC) biosensor has been developed for the identification of organophosphates(OPs) by using a reactivator. When the acetylcholinesterases(AChEs) inhibited by different kinds of OPs are reactived by a reactivator, the catalytic activity of AChEs can be recovered with different activation efficiency because of the different phosphorylation structures formed in the inhibited AChEs. Accordingly, the reactived AChEs can catalyze the hydrolysis of acetylthiocholine to generate thiocholine product in different degrees, which will result in different catalytic growth of AuNPs and further form distinct orientational response of LCs. Based on such a reactivation mechanism, the AChE LC biosensor with a simple, rapid and visual procedure achieves an obvious identification of three OPs pesticides, methamidophos, trichlorfon and paraoxon, by using a pralidoxime reactivator.
基金supported by the National Natural Science Foundation of China(21175109)the Chongqing Key Laboratory Special Fund
文摘Precise control of the size and morphology of metal-organic frameworks(MOFs) presents an important direction for extending these inorganic-organic materials to many more advanced applications. However, because of the limit of the crystal-growth rule and mechanism, good-control of the size and morphology of MOFs remains challenging. In this contribution, an iron-terephthalic acid metal-organic framework with different shapes(octahedron, spindle and bipyramidal hexagonal) was easily and reproducibly synthesized via a solvothermal method. Sodium acetate and glycerol were used as modulators. Mechanism studies showed that the crystal nucleation rate and orientational growth both play important roles in determining the final shape of the MOFs. Further investigations showed that the as prepared MOFs exhibit shape-dependent catalytic activities, which means that MOFs can be designed to perform different catalytic functions. This investigation not only provides an effective guideline for the precise control of the size and morphology of metal-organic frameworks, but also extends MOFs to much more advanced applications in terms of catalyst chemistry.
基金financially Supported by the National Natural Science Foundation of China (20772084)
文摘The asymmetric allylic alkylation reaction of sulfonylimidates with various Morita-Baylis-Hillman (MBH) carbonates was accomplished by the catalysis of commercially available cinchona alkaloids catalyst (DHQD)2AQN.The corresponding allylic alkylation products were obtained in good yields with high stereoselectivities (up to 99% ee,89:11 dr).
文摘Recent world events have emphasized the need to develop innovative, functional materials that will safely neutralize chemical warfare (CW) agents in situ to protect military personnel and civilians from dermal exposure. Here, we demonstrate the efficacy of a novel, proof-of-concept design for a Cu-containing catalyst, chemically bonded to a single-wall carbon nanotube (SWCNT) structural support, to effectively degrade an organophosphate simulant. SWCNTs have high tensile strength and are flexible and light-weight, which make them a desirable structural component for unique, fabric-like materials. This study aims to develop a self-decontaminating, carbon nanotube-derived material that can ultimately be incorporated into a wearable fabric or protective material to minimize dermal exposure to organophosphate nerve agents and to prevent accidental exposure during decontamination procedures. Carboxylated SWCNTs were functionalized with a polymer, which contained Cu-chelating bipyridine groups, and their catalytic activity against an organophosphate simulant was measured over time. The catalytically active, functionalized nanomaterial was characterized using X-ray fluorescence and Raman spectroscopy. Assuming zeroth-order reaction kinetics, the hydrolysis rate of the organophosphate simulant, as monitored by UV-vis absorption in the presence of the catalytically active nanomaterial, was 63 times faster than the uncatalyzed hydrolysis rate for a sample containing only carboxylated SWCNTs or a control sample containing no added nanotube materials.