Direct growth of GaN films on Si(001) substrate at low temperatures (620~720℃) by electron cyclotron resonance (ECR) microwave plasma enhanced metalorganic chemical vapor deposition (PEMOCVD).The crystalline phase s...Direct growth of GaN films on Si(001) substrate at low temperatures (620~720℃) by electron cyclotron resonance (ECR) microwave plasma enhanced metalorganic chemical vapor deposition (PEMOCVD).The crystalline phase structures of the films are investigated.The results of high resolution transmission electron microscopy (HRTEM) and X ray diffraction (XRD) indicate that high c axis oriented crystalline wurtzite GaN is grown on Si(001) but there is an amorphous layer formed naturally at GaN/Si interface.Both faces of the amorphous layer are flat and sharp,and the thickness of the layer is 2nm approximately cross the interface.The analysis supports that β GaN phase is not formed owing to the N x Si y amorphous layer induced by the reaction between N and Si during the initial nucleation stage.The results of XRD and atomic force microscopy (AFM) indicate that the conditions of substrate surface cleaned in situ by hydrogen plasma,GaN initial nucleation and subsequent growth are very important for the crystalline quality of GaN films.展开更多
High quality GaN is grown on GaN substrate with stripe pattern by metalorganic chemical vapor deposition by means of epitaxial lateral overgrowth. AFM,wet chemical etching, and TEM experiments show that with a two-ste...High quality GaN is grown on GaN substrate with stripe pattern by metalorganic chemical vapor deposition by means of epitaxial lateral overgrowth. AFM,wet chemical etching, and TEM experiments show that with a two-step ELOG procedure, the propagation of defects under the mask is blocked, and the coherently grown GaN above the window also experiences a drastic reduction in defect density. In addition, a grain boundary is formed at the coalescence boundary of neighboring growth fronts. The extremely low density of threading dislocations within wing regions makes ELOG GaN a potential template for the fabrication of nitride-based lasers with improved performance.展开更多
GaN buffer layers (thickness ~60nm) grown on GaAs(001) by low-temperature MOCVD are investigated by X-ray diffraction pole figure measurements using synchrotron radiation in order to understand the heteroepitaxial gr...GaN buffer layers (thickness ~60nm) grown on GaAs(001) by low-temperature MOCVD are investigated by X-ray diffraction pole figure measurements using synchrotron radiation in order to understand the heteroepitaxial growth features of GaN on GaAs(001) substrates.In addition to the epitaxially aligned crystallites,their corresponding twins of the first and the second order are found in the X-ray diffraction pole figures.Moreover,{111} φ scans with χ at 55° reveal the abnormal distribution of Bragg diffractions.The extra intensity maxima in the pole figures shows that the process of twinning plays a dominating role during the growth process.It is suggested that the polarity of {111} facets emerged on (001) surface will affect the growth-twin nucleation at the initial stages of GaN growth on GaAs(001) substrates.It is proposed that twinning is prone to occurring on {111}B,N-terminated facets.展开更多
GaNAs alloy is grown by metalorganic chemical vapor deposition (MOCVD) using dimethylhydrazine (DMHy) as the nitrogen precursor.High resolution X ray diffraction (HRXRD) and secondary ion mass spectro metry (SIMS...GaNAs alloy is grown by metalorganic chemical vapor deposition (MOCVD) using dimethylhydrazine (DMHy) as the nitrogen precursor.High resolution X ray diffraction (HRXRD) and secondary ion mass spectro metry (SIMS) are combined in determining the nitrogen contents in the samples.Room temperature photoluminescence (RTPL) measurement is also used in characterizing.The influence of different Ga precursors on GaNAs quality is investigated.Samples grown with triethylgallium (TEGa) have better qualities and less impurity contamination than those with trimethylgallium (TMGa).Nitrogen content of 5 688% is achieved with TEGa.The peak wavelength in RTPL measurement is measured to be 1278 5nm.展开更多
High quality ZnO films are successfully grown on Si(100) substrates by metal-organic chemical vapor deposition at 300℃. The effects of the thickness of the ZnO films on crystal structure, surface morphology,and opt...High quality ZnO films are successfully grown on Si(100) substrates by metal-organic chemical vapor deposition at 300℃. The effects of the thickness of the ZnO films on crystal structure, surface morphology,and optical properties are investigated using X-ray diffraction, scanning probe microscopy,and photoluminescence spectra, respectively. It is shown that the ZnO films grown on Si substrates have a highly-preferential C-axis orientation,but it is difficult to obtain the better structural and optical properties of the ZnO films with the increasing of thickness. It is maybe due to that the grain size and the growth model are changed in the growth process.展开更多
A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a ...A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a precursor. The growth of Cu nucleus on silicon substrates by H2 reduction of Cu(hfac)2 was studied by atomic force microscopy and scanning electron microscopy. The growth mode of Cu nucleus is initially Volmer-Weber mode (island), and then transforms to Stranski-Rastanov mode (layer-by-layer plus island). The mechanism of Cu nucleation on silicon (100) substrates was further investigated by X-ray photoelectron spectroscopy. From Cu2p, O1s, F1s, Si2p patterns, the observed C=O, OH and CF3/CF2 should belong to Cu(hfac) formed by the thermal dissociation of Cu(hfac)2. H2 reacts with hfac on the surface, producing OH. With its accumulation, OH reacts with hfac, forming HO-hfac, and desorbs, meanwhile, the copper oxide is reduced, and thus the redox reaction between Cu(hafc)2 and H2 occurs.展开更多
Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heati...Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heating device and thermal control technology are needed for each new reactor design. By using resistance-wire heating MOCVD reaction chamber model, thermal analysis and structure optimization of the reactor were developed from the vertical position and the distance between coils of the resistance-wire heater. It is indicated that, within a certain range, the average temperature of the graphite susceptor varies linearly with the vertical distance of heater to susceptor, and with the changed distances between the coils; furthermore, single resistance-wire heater should be placed loosely in the internal and tightly in the external. The modulate accuracy of the temperature field approximately equals the change of the average temperature corresponding to the change of the coil position.展开更多
Growth of blue InGaN based LED structures on sapphire wafers from 2 inch to 8 inch in diameter was investigated using the Veeco K465 MOCVD platform. Our results indicate that the same pressure,rotation rate and hydrid...Growth of blue InGaN based LED structures on sapphire wafers from 2 inch to 8 inch in diameter was investigated using the Veeco K465 MOCVD platform. Our results indicate that the same pressure,rotation rate and hydride flows can be used for all wafer sizes. AFM and X-ray studies reveal that all wafer sizes have comparable high-quality crystallinity and defect levels for GaN and InGaN/GaN MQW growth. Although the larger diameter wafers exhibit larger wafer bow due to lattice and thermal mismatch,with proper wafer pocket design,good wavelength and thickness uniformity can be obtained for all wafer sizes.展开更多
Room-temperature ferromagnetism with a Curie temperature higher than 380 K was studied in GaN: Mn thin films grown by metal-organic chemical vapor deposition. By etching artificial microstructures on the GaN: Mn layer...Room-temperature ferromagnetism with a Curie temperature higher than 380 K was studied in GaN: Mn thin films grown by metal-organic chemical vapor deposition. By etching artificial microstructures on the GaN: Mn layer,strong magnetic responses were observed in the magnetic force microscopy (MFM) measurement,which revealed that the films were independent of dopant particles and clusters. Numerical simulation on the data of atomic force microscope (AFM) and MFM measurements covering the whole microstructure validated the formation of long range magnetic order. This result excluded a variety of controversial origins of room-temperature ferromagnetism in the GaN: Mn and gave a strong evidence of our GaN: Mn as the intrinsic diluted magnetic semiconductor (DMS). The forwarded method for accurate characterization of long range magnetic order could be applied to a wide range of DMS and diluted magnetic oxide (DMO) systems.展开更多
We have recently demonstrated that GaAs nanosheets can be grown by metal-organic chemical vapor deposition (MOCVD). Here, we investigate these nanosheets by secondary electron scanning electron microscopy (SE-SEM)...We have recently demonstrated that GaAs nanosheets can be grown by metal-organic chemical vapor deposition (MOCVD). Here, we investigate these nanosheets by secondary electron scanning electron microscopy (SE-SEM) and electron beam induced current (EBIC) imaging. An abrupt boundary is observed between an initial growth region and an overgrowth region in the nanosheets. The SE-SEM contrast between these two regions is attributed to the inversion of doping at the boundary. EBIC mapping reveals a p-n junction formed along the boundary between these two regions. Rectifying I-V behavior is observed across the boundary further indicating the formation of a p-n junction. The electron concentration (ND) of the initial growth region is around 1 × 10^18 cm^-3, as determined by both Hall effect measurements and low temperature photoluminescence (PL) spectroscopy. Based on the EBIC data, the minority carrier diffusion length of the nanosheets is 177 nm, which is substantially longer than the corresponding length in unpassivated GaAs nanowires measured previously.展开更多
We present an InGaAs metamorphic high electron mobility transistor (mHEMT) grown using Metalorganic Chemical Vapor Deposition (MOCVD) on an n-type silicon substrate with the introduction of an effective multi-stag...We present an InGaAs metamorphic high electron mobility transistor (mHEMT) grown using Metalorganic Chemical Vapor Deposition (MOCVD) on an n-type silicon substrate with the introduction of an effective multi-stage buffering scheme. Fabrication and performance of a high-frequency 0.3μm gate-length depletion-mode A10.s0In0.s0As/Ga0.47In0.53As mHEMT is re- ported for the first time. Using a combined optical and e-beam photolithography technology, submicron mHEMT devices on Si have been achieved. The non-alloyed ohmic contact resistance Rc was as low as 0.065 Ω-mm. A maximum transconductance up to 761 mS/ram was measured. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 72.8 and 74.5 GHz, respectively. This device has the highest fw yet reported for a 0.3-μm gate-length Si-based mHEMT grown using MOCVD. A high voltage gain, gm/gds, of 40.6 is observed in the device.展开更多
We have successfully employed metal-organic chemical vapor deposition (MOCVD) technique to simultaneously deposit double-sided YBa2Cu3O7-δ (YBCO) films on both sides of YzO3/yttria-stabilized zirconia (YSZ)/Ce...We have successfully employed metal-organic chemical vapor deposition (MOCVD) technique to simultaneously deposit double-sided YBa2Cu3O7-δ (YBCO) films on both sides of YzO3/yttria-stabilized zirconia (YSZ)/CeO2 (YYC) buffered biaxially textured Ni-5 at.% W substrates, which is of great prospect to cut the production cost of YBCO coated conductors. X-ray diffraction analysis revealed that both sides of YBCO film were purely c-axis oriented and highly textured. The co-scan of (005) YBCO and Ф-scan of (103) YBCO yielded full width at half maximum (FWHM) values of 4.9° and 6.6° for one side of double-sided YBCO film, respectively, as well as 4.4° and 6.4° for the other side. The current transportation measurements performed on such double-sided 500 nm-thickness YBCO films showed the self-field critical current density (Jc) at 77 K of 0.6 MA/cm^2 and 1.2 MA/cm^2, respectively. Further research is in the process of exploring new solution to improve the Jc in practice.展开更多
Indium oxide(In_2O_3) films were prepared on Al_2O_3(0001) substrates at 700 °C by metal-organic chemical vapor deposition(MOCVD).Then the samples were annealed at 800 °C,900 °C and 1 000 °C,respec...Indium oxide(In_2O_3) films were prepared on Al_2O_3(0001) substrates at 700 °C by metal-organic chemical vapor deposition(MOCVD).Then the samples were annealed at 800 °C,900 °C and 1 000 °C,respectively.The X-ray diffraction(XRD) analysis reveals that the samples were polycrystalline films before and after annealing treatment.Triangle or quadrangle grains can be observed,and the corner angle of the grains becomes smooth after annealing.The highest Hall mobility is obtained for the sample annealed at 900 °C with the value about 24.74 cm^2·V^(-1)·s^(-1).The average transmittance for the films in the visible range is over 90%.The optical band gaps of the samples are about 3.73 e V,3.71 e V,3.70 eV and 3.69 eV corresponding to the In_2O_3 films deposited at 700 °C and annealed at 800 °C,900 °C and 1 000 °C,respectively.展开更多
Nonpolar a-plane (1120) GaN films have been grown on r-plane (1102) sapphire by metal-organic chemical vapor deposition (MOCVD) under different growth pressures. The as-grown films are investigated by optical mi...Nonpolar a-plane (1120) GaN films have been grown on r-plane (1102) sapphire by metal-organic chemical vapor deposition (MOCVD) under different growth pressures. The as-grown films are investigated by optical microscopy, high-resolution X-ray diffraction (HRXRD) and Raman scattering. As growth pressure rises from 100 mbar to 400 mbar, the surface gets rougher, and the in-plane XRD full width at half maximum (FWHM) along the c-axis [0001] increases while that along the m-axis [1100] decreases. Meanwhile, residential stresses are reduced along both the c-axis and the m-axis. The structural anisotropy feature under 400 mbar is inverted with respect to 100 mbar, and the weakened anisotropy is achieved under a moderate pressure of 200 mbar, probably due to the suppressed Ga atomic migration along the c-axis under a larger pressure. We propose that pressure can affect a-plane growth through the V/III ratio.展开更多
文摘Direct growth of GaN films on Si(001) substrate at low temperatures (620~720℃) by electron cyclotron resonance (ECR) microwave plasma enhanced metalorganic chemical vapor deposition (PEMOCVD).The crystalline phase structures of the films are investigated.The results of high resolution transmission electron microscopy (HRTEM) and X ray diffraction (XRD) indicate that high c axis oriented crystalline wurtzite GaN is grown on Si(001) but there is an amorphous layer formed naturally at GaN/Si interface.Both faces of the amorphous layer are flat and sharp,and the thickness of the layer is 2nm approximately cross the interface.The analysis supports that β GaN phase is not formed owing to the N x Si y amorphous layer induced by the reaction between N and Si during the initial nucleation stage.The results of XRD and atomic force microscopy (AFM) indicate that the conditions of substrate surface cleaned in situ by hydrogen plasma,GaN initial nucleation and subsequent growth are very important for the crystalline quality of GaN films.
文摘High quality GaN is grown on GaN substrate with stripe pattern by metalorganic chemical vapor deposition by means of epitaxial lateral overgrowth. AFM,wet chemical etching, and TEM experiments show that with a two-step ELOG procedure, the propagation of defects under the mask is blocked, and the coherently grown GaN above the window also experiences a drastic reduction in defect density. In addition, a grain boundary is formed at the coalescence boundary of neighboring growth fronts. The extremely low density of threading dislocations within wing regions makes ELOG GaN a potential template for the fabrication of nitride-based lasers with improved performance.
文摘GaN buffer layers (thickness ~60nm) grown on GaAs(001) by low-temperature MOCVD are investigated by X-ray diffraction pole figure measurements using synchrotron radiation in order to understand the heteroepitaxial growth features of GaN on GaAs(001) substrates.In addition to the epitaxially aligned crystallites,their corresponding twins of the first and the second order are found in the X-ray diffraction pole figures.Moreover,{111} φ scans with χ at 55° reveal the abnormal distribution of Bragg diffractions.The extra intensity maxima in the pole figures shows that the process of twinning plays a dominating role during the growth process.It is suggested that the polarity of {111} facets emerged on (001) surface will affect the growth-twin nucleation at the initial stages of GaN growth on GaAs(001) substrates.It is proposed that twinning is prone to occurring on {111}B,N-terminated facets.
文摘GaNAs alloy is grown by metalorganic chemical vapor deposition (MOCVD) using dimethylhydrazine (DMHy) as the nitrogen precursor.High resolution X ray diffraction (HRXRD) and secondary ion mass spectro metry (SIMS) are combined in determining the nitrogen contents in the samples.Room temperature photoluminescence (RTPL) measurement is also used in characterizing.The influence of different Ga precursors on GaNAs quality is investigated.Samples grown with triethylgallium (TEGa) have better qualities and less impurity contamination than those with trimethylgallium (TMGa).Nitrogen content of 5 688% is achieved with TEGa.The peak wavelength in RTPL measurement is measured to be 1278 5nm.
文摘High quality ZnO films are successfully grown on Si(100) substrates by metal-organic chemical vapor deposition at 300℃. The effects of the thickness of the ZnO films on crystal structure, surface morphology,and optical properties are investigated using X-ray diffraction, scanning probe microscopy,and photoluminescence spectra, respectively. It is shown that the ZnO films grown on Si substrates have a highly-preferential C-axis orientation,but it is difficult to obtain the better structural and optical properties of the ZnO films with the increasing of thickness. It is maybe due to that the grain size and the growth model are changed in the growth process.
基金ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20576112).
文摘A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a precursor. The growth of Cu nucleus on silicon substrates by H2 reduction of Cu(hfac)2 was studied by atomic force microscopy and scanning electron microscopy. The growth mode of Cu nucleus is initially Volmer-Weber mode (island), and then transforms to Stranski-Rastanov mode (layer-by-layer plus island). The mechanism of Cu nucleation on silicon (100) substrates was further investigated by X-ray photoelectron spectroscopy. From Cu2p, O1s, F1s, Si2p patterns, the observed C=O, OH and CF3/CF2 should belong to Cu(hfac) formed by the thermal dissociation of Cu(hfac)2. H2 reacts with hfac on the surface, producing OH. With its accumulation, OH reacts with hfac, forming HO-hfac, and desorbs, meanwhile, the copper oxide is reduced, and thus the redox reaction between Cu(hafc)2 and H2 occurs.
基金Projects(61376076,61274026,61377024)supported by the National Natural Science Foundation of ChinaProjects(12C0108,13C321)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2013FJ2011,2013FJ4232)supported by the Science and Technology Plan of Hunan Province,China
文摘Metal organic chemical vapor deposition(MOCVD) is a key equipment in the manufacturing of semiconductor optoelectronic devices and microwave devices in industry. Heating system is a vital part of MOCVD. Specific heating device and thermal control technology are needed for each new reactor design. By using resistance-wire heating MOCVD reaction chamber model, thermal analysis and structure optimization of the reactor were developed from the vertical position and the distance between coils of the resistance-wire heater. It is indicated that, within a certain range, the average temperature of the graphite susceptor varies linearly with the vertical distance of heater to susceptor, and with the changed distances between the coils; furthermore, single resistance-wire heater should be placed loosely in the internal and tightly in the external. The modulate accuracy of the temperature field approximately equals the change of the average temperature corresponding to the change of the coil position.
文摘Growth of blue InGaN based LED structures on sapphire wafers from 2 inch to 8 inch in diameter was investigated using the Veeco K465 MOCVD platform. Our results indicate that the same pressure,rotation rate and hydride flows can be used for all wafer sizes. AFM and X-ray studies reveal that all wafer sizes have comparable high-quality crystallinity and defect levels for GaN and InGaN/GaN MQW growth. Although the larger diameter wafers exhibit larger wafer bow due to lattice and thermal mismatch,with proper wafer pocket design,good wavelength and thickness uniformity can be obtained for all wafer sizes.
基金supported by the National Natural Science Foundation of China (Grant Nos.60577030,60776041,60876035)the National Key Basic Research Special Foundation of China (Grant Nos.TG2007CB307004,2006CB921607)
文摘Room-temperature ferromagnetism with a Curie temperature higher than 380 K was studied in GaN: Mn thin films grown by metal-organic chemical vapor deposition. By etching artificial microstructures on the GaN: Mn layer,strong magnetic responses were observed in the magnetic force microscopy (MFM) measurement,which revealed that the films were independent of dopant particles and clusters. Numerical simulation on the data of atomic force microscope (AFM) and MFM measurements covering the whole microstructure validated the formation of long range magnetic order. This result excluded a variety of controversial origins of room-temperature ferromagnetism in the GaN: Mn and gave a strong evidence of our GaN: Mn as the intrinsic diluted magnetic semiconductor (DMS). The forwarded method for accurate characterization of long range magnetic order could be applied to a wide range of DMS and diluted magnetic oxide (DMO) systems.
文摘We have recently demonstrated that GaAs nanosheets can be grown by metal-organic chemical vapor deposition (MOCVD). Here, we investigate these nanosheets by secondary electron scanning electron microscopy (SE-SEM) and electron beam induced current (EBIC) imaging. An abrupt boundary is observed between an initial growth region and an overgrowth region in the nanosheets. The SE-SEM contrast between these two regions is attributed to the inversion of doping at the boundary. EBIC mapping reveals a p-n junction formed along the boundary between these two regions. Rectifying I-V behavior is observed across the boundary further indicating the formation of a p-n junction. The electron concentration (ND) of the initial growth region is around 1 × 10^18 cm^-3, as determined by both Hall effect measurements and low temperature photoluminescence (PL) spectroscopy. Based on the EBIC data, the minority carrier diffusion length of the nanosheets is 177 nm, which is substantially longer than the corresponding length in unpassivated GaAs nanowires measured previously.
基金supported by the CERG(Grant No. 615506) from the Research Grants Council of Hong Kong and Intel Corporation
文摘We present an InGaAs metamorphic high electron mobility transistor (mHEMT) grown using Metalorganic Chemical Vapor Deposition (MOCVD) on an n-type silicon substrate with the introduction of an effective multi-stage buffering scheme. Fabrication and performance of a high-frequency 0.3μm gate-length depletion-mode A10.s0In0.s0As/Ga0.47In0.53As mHEMT is re- ported for the first time. Using a combined optical and e-beam photolithography technology, submicron mHEMT devices on Si have been achieved. The non-alloyed ohmic contact resistance Rc was as low as 0.065 Ω-mm. A maximum transconductance up to 761 mS/ram was measured. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 72.8 and 74.5 GHz, respectively. This device has the highest fw yet reported for a 0.3-μm gate-length Si-based mHEMT grown using MOCVD. A high voltage gain, gm/gds, of 40.6 is observed in the device.
基金supported by the National Natural Science Foundation of China(Grant No.51002024)Sichuan Youth Science and Technology Innovation Research Team Funding(Grant No.2011JTD0006)Fundamental Research Funds for the Central Universities(Grant Nos.ZYGX2012J039 and ZYGX2011Z002)
文摘We have successfully employed metal-organic chemical vapor deposition (MOCVD) technique to simultaneously deposit double-sided YBa2Cu3O7-δ (YBCO) films on both sides of YzO3/yttria-stabilized zirconia (YSZ)/CeO2 (YYC) buffered biaxially textured Ni-5 at.% W substrates, which is of great prospect to cut the production cost of YBCO coated conductors. X-ray diffraction analysis revealed that both sides of YBCO film were purely c-axis oriented and highly textured. The co-scan of (005) YBCO and Ф-scan of (103) YBCO yielded full width at half maximum (FWHM) values of 4.9° and 6.6° for one side of double-sided YBCO film, respectively, as well as 4.4° and 6.4° for the other side. The current transportation measurements performed on such double-sided 500 nm-thickness YBCO films showed the self-field critical current density (Jc) at 77 K of 0.6 MA/cm^2 and 1.2 MA/cm^2, respectively. Further research is in the process of exploring new solution to improve the Jc in practice.
基金supported by the National Natural Science Foundation of China(Nos.6127411311204212 and 61404091)+5 种基金the Program for New Century Excellent Talents in University(No.NCET-11-1064)the Tianjin Natural Science Foundation(Nos.13JCYBJC1570013JCZDJC2610014JCZDJC31500 and 14JCQNJC00800)the Tianjin Science and Technology Developmental Funds of Universities and Colleges(Nos.2010070320130701 and 20130702)
文摘Indium oxide(In_2O_3) films were prepared on Al_2O_3(0001) substrates at 700 °C by metal-organic chemical vapor deposition(MOCVD).Then the samples were annealed at 800 °C,900 °C and 1 000 °C,respectively.The X-ray diffraction(XRD) analysis reveals that the samples were polycrystalline films before and after annealing treatment.Triangle or quadrangle grains can be observed,and the corner angle of the grains becomes smooth after annealing.The highest Hall mobility is obtained for the sample annealed at 900 °C with the value about 24.74 cm^2·V^(-1)·s^(-1).The average transmittance for the films in the visible range is over 90%.The optical band gaps of the samples are about 3.73 e V,3.71 e V,3.70 eV and 3.69 eV corresponding to the In_2O_3 films deposited at 700 °C and annealed at 800 °C,900 °C and 1 000 °C,respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60890192 and 50872146)
文摘Nonpolar a-plane (1120) GaN films have been grown on r-plane (1102) sapphire by metal-organic chemical vapor deposition (MOCVD) under different growth pressures. The as-grown films are investigated by optical microscopy, high-resolution X-ray diffraction (HRXRD) and Raman scattering. As growth pressure rises from 100 mbar to 400 mbar, the surface gets rougher, and the in-plane XRD full width at half maximum (FWHM) along the c-axis [0001] increases while that along the m-axis [1100] decreases. Meanwhile, residential stresses are reduced along both the c-axis and the m-axis. The structural anisotropy feature under 400 mbar is inverted with respect to 100 mbar, and the weakened anisotropy is achieved under a moderate pressure of 200 mbar, probably due to the suppressed Ga atomic migration along the c-axis under a larger pressure. We propose that pressure can affect a-plane growth through the V/III ratio.