A study was conducted to evaluate the cultivable filamentous fungal diversity in organic layers (L, F, and H layers) and A1 layer of two main forest types, Pinus massoniana and Liguidambar formasana mixed forest and Q...A study was conducted to evaluate the cultivable filamentous fungal diversity in organic layers (L, F, and H layers) and A1 layer of two main forest types, Pinus massoniana and Liguidambar formasana mixed forest and Quercus variabilis forest, in Zijin Mountain(325?N, 11848?E), Nanjing, China. A total of 67 taxa comprising 56 Deuteromycetes, 3 Zygomycetes, 5 Asco-mycetes and 3 unidentified fungi were recognized from samples from the forest floor of the two forest types. The most abundant group was Deuteromycetes. The dominant genera in both forests were Alternaria sp., Aspergillus sp., Cladosporium sp., Mucor sp., Penicillium sp., Rhizopus sp., Gliocladium sp. and Trichoderma spp. The fungal diversity was higher in the mixed forest than that in Q. variabilis forest. For both forest types, the maximum fungal diversity was found in layer F and there existed significantly different in fungal diversity between layer F and layer L. In the mixed forest, richness of fungi isolated from needle litter (P. massoniana) was lower than that from leaf litter (L. formasana). The richness of fungi from needle litter increased with the in-crease of forest floor depth, but for leaf litter, the fungal diversity decreased with the depth of forest floor. The co-species of fungi from the two forest types, as well as from two kinds of litters in mixed forest, increased with the depth of the forest floor. The succession of fungi along with the process of decomposition was discussed here. The results also showed that litter quality was a critical factor affecting fungal diversity.展开更多
Dark brown forest soil was collected from the upper 20 cm soil layer in Changbai Mountain Research Station of Ecosystem, Chinese Academy of Sciences. The soil was amended with two different forms of nitrogen fertilize...Dark brown forest soil was collected from the upper 20 cm soil layer in Changbai Mountain Research Station of Ecosystem, Chinese Academy of Sciences. The soil was amended with two different forms of nitrogen fertilizers: NO3- as Ca(NO3)2, NH4+ as NH4Cl at the concentrations of 50, 100, 200 and 400 mgkg-1 respectively. The experiment was carried out with 2-yr-old Pinus koraiensis seedlings in pot. The pH change of rhizosphere soil and the contents of available Fe, Mn, Cu, and Zn in soil and leaves were analyzed. The result indicated that the addition of NH4--N decreased the rhizosphere pH value, while the addition of NO3--N increased the rhizosphere pH value in contrast with the control treatment. The direction and extent of the pH change mainly depended on N source and its concentrations applied. The rhizosphere pH change had a remarkable influence on the availability of the micronutrients in the rhizosphere, and thereafter affected the nutrient uptake by the seedlings. The contents of available mineral nutrients had a negative correlation with the pH value in the rhizosphere soil. The contents of available mineral nutrients in leaves were positively correlated to the levels of the available nutrients in the rhizosphere soils.展开更多
Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C ...Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C and N were compared in four typical land use systems which were planted with Ryegrass (Lolium multiflorum Lam.), Bahiagrass (Paspalum notatum Flugge.), Citrus (Citrus reticulata Blanco.), and Masson pine (Pinus Massoniana Lamb.) during 10 years in south China. Although biomass of plants in these four land use systems was nearly at the same level in the former investigation, total biomass for Ryegrass (RG), Bahiagrass (BG) was 3.68 and 3.75 times higher than that for Citrus (CT), and 2.06 and 2.14 times higher than that for Masson pine (MP) over 10 years of cultivation, respectively. Especially, underground total biomass for both RG and BG was over 10 times larger than that for CT and MP, indicating that forage grasses was much more beneficial to increase organic C and N storage in soils than CT and MP. The change content of soil organic C and N mainly occurred within soil depth of the 0–40 cm. The increased content of soil organic carbon and nitrogen was for 1.5 t·hm?2 and 0.2 t·hm?2 in the soil with planting RG and BG, and was for 1.2 t·hm?2 and 0.02 t·hm?2 in the soil with planting CT. An average loss was for 0.4 t·hm?2 and 0.04 t·hm?2 in the soil with planting MP during 10-year period. Keywords Soil organic carbon - Soil organic nitrogen - Dynamic change - Land use - Quantitative assessment CLC number S153.61 Document code A Foundation item: This research was partly supported by National Natural Science Foundation of China (30100144), and by Scientific Committee of Shenyang City (1011501900).Biography: WANG Xiao-ju (1967-), mail, Ph.D. Researcher in Center for Environmental Science in Saitama. Saitama Prefecture 347 0115, Japan.Responsible editor: Zhu Hong展开更多
Different proportions of A1 and B horizons dark brown forest soils (A1∶B=1∶2) were utilized to set the soil nutrient deficient conditions, and Larix olgensis seedlings were cultivated. By simulating organic acids ...Different proportions of A1 and B horizons dark brown forest soils (A1∶B=1∶2) were utilized to set the soil nutrient deficient conditions, and Larix olgensis seedlings were cultivated. By simulating organic acids concentrations in forest litter leachates of northeast China, the effects and mechanism of different concentrations of organic acid solutions on phosphorus (P) availability of dark brown forest soils and P absorption of Larix olgensis seedlings with nutrient deficiency were studied. The results showed that, compared with A1 horizon soils, available P contents of mixed soils in A1 and B horizons decreased, and P accumulation and efficiency of P uptake in root and leaves of Larix olgensis seedlings also decreased, but efficiency of P utilization increased. After treatments of exogenous organic acids, available P contents of mixed soils increased and the impact sequence of different organic acids were succinic acid 〉 citric acid 〉 oxalic acid; the concentration of 5.0 mmol/L had the best function, and the best effect of organic acids was at 20 d. Organic acids also increased P accumulation and efficiency of P uptake in roots and leaves of Larix olgensis seedlings, but decreased efficiency of P utilization. The impact strength of organic acids on P accumulation and efficiency of P uptake varied with treatment time, type and concentration of organic acids. The results of 20 d and 30 d in roots were higher than those of 10 d, however, the results of 10 d and 20 d in leaves were higher than those of 30 d, thus, at the earlier stage of organic acids treatments, more P absorbed were transferred to leaves, and at the later stage, more P would be accumulated in roots. The concentration of 10.0 mmol/L had the best function, and the impact sequence of different organic acids was succinic acid 〉 citric acid 〉 oxalic acid. Therefore, organic acids might contribute to P absorption and accumulation by Larix olgensis seedlings, final y increasing the adaptability and endurance of Larix olgensis seedlings to nutrient deficient soils.展开更多
[Objective] This study aimed to investigate the effects of nutrient and water stress on the secretion of organic acids from roots of two-year-old Larix olgensis. [Method] Different nutrient and water stress conditions...[Objective] This study aimed to investigate the effects of nutrient and water stress on the secretion of organic acids from roots of two-year-old Larix olgensis. [Method] Different nutrient and water stress conditions were designed to investi- gate the types and quantities of organic acids secreted from roots of two-year-old L. olgensis. [Result] Under nutrient and water stress, the types of organic acids secreted from roots of two-year-old L. olgensis increased, which varied with different stress levels. In addition, nutrient and water stress also increased the secretory vol- ume of organic acids from roots of two-year-old L. olgensis. The increment in total amount of organic acids reached the maximum under Level 1 (high stress). Among different types of organic acids, the increment in secretory volume of citric acid reached the maximum, followed by malic acid, while oxalic acid presented relatively small increment. Furthermore, the increment in secretory volume of these three organic acids all reached the maximum under Level 1. [Conclusion] The proportion of the secretory volume of each organic acid accounting for the total amount of organic acids varied slightly, but the overall order was unchanged.展开更多
[Objective] The aim was to research impacts of agricultural non-point pol- lution on water-source region in Songhua Dam, laying foundation for control of water pollution and scientific protection of water-source regio...[Objective] The aim was to research impacts of agricultural non-point pol- lution on water-source region in Songhua Dam, laying foundation for control of water pollution and scientific protection of water-source region. [Method] Water in Muyang River, lengshui River and Zizania aquatica region were sampled to measure content of pollutants in water and conclude relation between water contamination and agri- cultural non-point pollution to find the major cause of pollution. [Result] Organic pollu- tant in Muyang River was higher; N and P contents in Lengshui River were higher; the measured indices in Zizania aquatica region excessively exceeded related stan- dard. [Conclusion] The chemical fertilizers and pesticides are the toxic materials lead- ing to water contamination and constitute a major cause of pollution in Songhua Dam water-source region. Agricultural non-point pollution should be controlled in a scientific way.展开更多
Soil organic carbon (SOC) and its relationship with landscape attributes are important for evaluating current regional, continental, and global carbon stores. Data of SOC in surface soils (0–20 cm) of four main soils...Soil organic carbon (SOC) and its relationship with landscape attributes are important for evaluating current regional, continental, and global carbon stores. Data of SOC in surface soils (0–20 cm) of four main soils, Cambisol, Arenosol, Phaeozem, and Chernozem, were collected at 451 locations in Nongan County under maize monoculture in the Song-Nen Plain, Northeast China. The spatial characteristics of soil organic carbon were studied, using geographic information systems (GIS) and geostatistics. Effects of other soil physical and chemical properties, elevation, slope, and soil type on SOC were explored. SOC concentrations followed a normal distribution, with an arithmetic mean of 14.91 g kg-1 . The experimental variogram of SOC was fitted with a spherical model. There were significant correlations between soil organic carbon and bulk density (r =-0.374**), pH (r = 0.549**), total nitrogen (r = 0.781**), extractable phosphorus (r =-0.109*), exchangeable potassium (r = 0.565**), and cation exchange capacity (r = 0.313**). Generally, lower SOC concentrations were significantly associated with high elevation (r =-0.429**). Soil organic carbon was significantly negatively correlated with slope gradient (r =-0.195**). Samples of the Cambisol statistically had the highest SOC concentrations, and samples of the Arenosol had the lowest SOC value.展开更多
Thermal analysis and thermal diagnose are important for small power connector especially in electronic devices since their structure is usually compact. In this paper thermal behavior of small power connector was inve...Thermal analysis and thermal diagnose are important for small power connector especially in electronic devices since their structure is usually compact. In this paper thermal behavior of small power connector was investigated. It was found that the contact resistance increased due to the Joule beating, and that increased contact resistance produced more Joule heating; this mutual action causes the connector to lose efficiency. The thermal distribution in the connector was analyzed using finite element method (FEM). The failure mechanism is discussed. It provides basis for improving the structure. The conclusion was verified by experimental results.展开更多
The general Lie point symmetry groups of the Nizhnik-Novikov-Vesselov (NNV) equation and the asymmetric NNV equation are given by a simple direct method with help of their weak Lax pairs.
Soils play a critical role in the global carbon cycle, and can be major source or sink of CO2 depending upon land use, vegetation type and soil management practices. Fine roots are important component of a forest ecos...Soils play a critical role in the global carbon cycle, and can be major source or sink of CO2 depending upon land use, vegetation type and soil management practices. Fine roots are important component of a forest ecosystem in terms of water and nutrient uptake. In this study the effects of thinning and litter fall removal on fine root production and soil organic carbon content were examined in 20-year-old Masson pine (Pinus resinosa) plantations in Huitong, Hunan Province of China in the growing seasons of 2004 and 2005. The results showed that fine root production was significantly lower in the thinning plots than in the control plots, with a decrease of 58% and 14% in 2004 and 2005 growing seasons, respectively. Litter fall removal significantly increased fine root production by 14% in 2004. Soil temperature (Tsoil) and soil moisture (Msoil) were higher in the thinning plots than those in the controls. Litter fall removal had significant effects on Tsoil and Msoil. Soil organic carbon content was higher in the thinning plots but was lower in the plots with litter fall removal compared with that in the controls. Our results also indicated that annual production of fine roots resulted in small carbon accumulation in the upper layers of the soil, and removal of tree by thinning resulted in a significant increase of carbon storage in Masson pine plantations.展开更多
By considering a new discrete isospectral eigenvalue problem, a hierarchy of lattice soliton equations of rational type are derived. It is shown that each equation in the resulting hierarchy is integrable in Liouville...By considering a new discrete isospectral eigenvalue problem, a hierarchy of lattice soliton equations of rational type are derived. It is shown that each equation in the resulting hierarchy is integrable in Liouville sense and possessing bi-Hamiltonian structure. Two types of semi-direct sums of Lie algebras are proposed, by using of which a practicable way to construct discrete integrable couplings is introduced. As applications, two kinds of discrete integrable couplings of the resulting system are worked out.展开更多
基金This paper was supported by Chinese Program for High Technology Research and Development (2003AA209030) Scien-tific Research Foundation for doctoral supervising laboratory State Education Ministry (20030284044) and National Natural Sc
文摘A study was conducted to evaluate the cultivable filamentous fungal diversity in organic layers (L, F, and H layers) and A1 layer of two main forest types, Pinus massoniana and Liguidambar formasana mixed forest and Quercus variabilis forest, in Zijin Mountain(325?N, 11848?E), Nanjing, China. A total of 67 taxa comprising 56 Deuteromycetes, 3 Zygomycetes, 5 Asco-mycetes and 3 unidentified fungi were recognized from samples from the forest floor of the two forest types. The most abundant group was Deuteromycetes. The dominant genera in both forests were Alternaria sp., Aspergillus sp., Cladosporium sp., Mucor sp., Penicillium sp., Rhizopus sp., Gliocladium sp. and Trichoderma spp. The fungal diversity was higher in the mixed forest than that in Q. variabilis forest. For both forest types, the maximum fungal diversity was found in layer F and there existed significantly different in fungal diversity between layer F and layer L. In the mixed forest, richness of fungi isolated from needle litter (P. massoniana) was lower than that from leaf litter (L. formasana). The richness of fungi from needle litter increased with the in-crease of forest floor depth, but for leaf litter, the fungal diversity decreased with the depth of forest floor. The co-species of fungi from the two forest types, as well as from two kinds of litters in mixed forest, increased with the depth of the forest floor. The succession of fungi along with the process of decomposition was discussed here. The results also showed that litter quality was a critical factor affecting fungal diversity.
基金This paper was supported by National Natural Science Foundation of China (Grant No. 30170167).
文摘Dark brown forest soil was collected from the upper 20 cm soil layer in Changbai Mountain Research Station of Ecosystem, Chinese Academy of Sciences. The soil was amended with two different forms of nitrogen fertilizers: NO3- as Ca(NO3)2, NH4+ as NH4Cl at the concentrations of 50, 100, 200 and 400 mgkg-1 respectively. The experiment was carried out with 2-yr-old Pinus koraiensis seedlings in pot. The pH change of rhizosphere soil and the contents of available Fe, Mn, Cu, and Zn in soil and leaves were analyzed. The result indicated that the addition of NH4--N decreased the rhizosphere pH value, while the addition of NO3--N increased the rhizosphere pH value in contrast with the control treatment. The direction and extent of the pH change mainly depended on N source and its concentrations applied. The rhizosphere pH change had a remarkable influence on the availability of the micronutrients in the rhizosphere, and thereafter affected the nutrient uptake by the seedlings. The contents of available mineral nutrients had a negative correlation with the pH value in the rhizosphere soil. The contents of available mineral nutrients in leaves were positively correlated to the levels of the available nutrients in the rhizosphere soils.
基金National Natural Science Foundation of China (30100144) and by Scientific Committee of Shenyang City (1011501900).
文摘Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C and N were compared in four typical land use systems which were planted with Ryegrass (Lolium multiflorum Lam.), Bahiagrass (Paspalum notatum Flugge.), Citrus (Citrus reticulata Blanco.), and Masson pine (Pinus Massoniana Lamb.) during 10 years in south China. Although biomass of plants in these four land use systems was nearly at the same level in the former investigation, total biomass for Ryegrass (RG), Bahiagrass (BG) was 3.68 and 3.75 times higher than that for Citrus (CT), and 2.06 and 2.14 times higher than that for Masson pine (MP) over 10 years of cultivation, respectively. Especially, underground total biomass for both RG and BG was over 10 times larger than that for CT and MP, indicating that forage grasses was much more beneficial to increase organic C and N storage in soils than CT and MP. The change content of soil organic C and N mainly occurred within soil depth of the 0–40 cm. The increased content of soil organic carbon and nitrogen was for 1.5 t·hm?2 and 0.2 t·hm?2 in the soil with planting RG and BG, and was for 1.2 t·hm?2 and 0.02 t·hm?2 in the soil with planting CT. An average loss was for 0.4 t·hm?2 and 0.04 t·hm?2 in the soil with planting MP during 10-year period. Keywords Soil organic carbon - Soil organic nitrogen - Dynamic change - Land use - Quantitative assessment CLC number S153.61 Document code A Foundation item: This research was partly supported by National Natural Science Foundation of China (30100144), and by Scientific Committee of Shenyang City (1011501900).Biography: WANG Xiao-ju (1967-), mail, Ph.D. Researcher in Center for Environmental Science in Saitama. Saitama Prefecture 347 0115, Japan.Responsible editor: Zhu Hong
基金National Natural Science Foundation of China(31370613)Research Program of China(973 Program)(2011CB403202)+1 种基金General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China(2009IK177)Fundamental Research Funds for the Central Universities(DL12CA01)~~
文摘Different proportions of A1 and B horizons dark brown forest soils (A1∶B=1∶2) were utilized to set the soil nutrient deficient conditions, and Larix olgensis seedlings were cultivated. By simulating organic acids concentrations in forest litter leachates of northeast China, the effects and mechanism of different concentrations of organic acid solutions on phosphorus (P) availability of dark brown forest soils and P absorption of Larix olgensis seedlings with nutrient deficiency were studied. The results showed that, compared with A1 horizon soils, available P contents of mixed soils in A1 and B horizons decreased, and P accumulation and efficiency of P uptake in root and leaves of Larix olgensis seedlings also decreased, but efficiency of P utilization increased. After treatments of exogenous organic acids, available P contents of mixed soils increased and the impact sequence of different organic acids were succinic acid 〉 citric acid 〉 oxalic acid; the concentration of 5.0 mmol/L had the best function, and the best effect of organic acids was at 20 d. Organic acids also increased P accumulation and efficiency of P uptake in roots and leaves of Larix olgensis seedlings, but decreased efficiency of P utilization. The impact strength of organic acids on P accumulation and efficiency of P uptake varied with treatment time, type and concentration of organic acids. The results of 20 d and 30 d in roots were higher than those of 10 d, however, the results of 10 d and 20 d in leaves were higher than those of 30 d, thus, at the earlier stage of organic acids treatments, more P absorbed were transferred to leaves, and at the later stage, more P would be accumulated in roots. The concentration of 10.0 mmol/L had the best function, and the impact sequence of different organic acids was succinic acid 〉 citric acid 〉 oxalic acid. Therefore, organic acids might contribute to P absorption and accumulation by Larix olgensis seedlings, final y increasing the adaptability and endurance of Larix olgensis seedlings to nutrient deficient soils.
基金Supported by National Natural Science Foundation of China(31370613)Major State Basic Research Development Program of China(973 Program)(2011CB403202)+1 种基金Project of General Administration of Quality Supervision,Inspection and Quarantine of China(2009IK177)Fundamental Research Fund for the Central Universities(DL12CA01)~~
文摘[Objective] This study aimed to investigate the effects of nutrient and water stress on the secretion of organic acids from roots of two-year-old Larix olgensis. [Method] Different nutrient and water stress conditions were designed to investi- gate the types and quantities of organic acids secreted from roots of two-year-old L. olgensis. [Result] Under nutrient and water stress, the types of organic acids secreted from roots of two-year-old L. olgensis increased, which varied with different stress levels. In addition, nutrient and water stress also increased the secretory vol- ume of organic acids from roots of two-year-old L. olgensis. The increment in total amount of organic acids reached the maximum under Level 1 (high stress). Among different types of organic acids, the increment in secretory volume of citric acid reached the maximum, followed by malic acid, while oxalic acid presented relatively small increment. Furthermore, the increment in secretory volume of these three organic acids all reached the maximum under Level 1. [Conclusion] The proportion of the secretory volume of each organic acid accounting for the total amount of organic acids varied slightly, but the overall order was unchanged.
文摘[Objective] The aim was to research impacts of agricultural non-point pol- lution on water-source region in Songhua Dam, laying foundation for control of water pollution and scientific protection of water-source region. [Method] Water in Muyang River, lengshui River and Zizania aquatica region were sampled to measure content of pollutants in water and conclude relation between water contamination and agri- cultural non-point pollution to find the major cause of pollution. [Result] Organic pollu- tant in Muyang River was higher; N and P contents in Lengshui River were higher; the measured indices in Zizania aquatica region excessively exceeded related stan- dard. [Conclusion] The chemical fertilizers and pesticides are the toxic materials lead- ing to water contamination and constitute a major cause of pollution in Songhua Dam water-source region. Agricultural non-point pollution should be controlled in a scientific way.
基金Projcet supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-341)the National Basic Research Program of China (No. 2009CB421103)the National Natural Science Foundation ofChina (Nos. 40871187 and 40930527)
文摘Soil organic carbon (SOC) and its relationship with landscape attributes are important for evaluating current regional, continental, and global carbon stores. Data of SOC in surface soils (0–20 cm) of four main soils, Cambisol, Arenosol, Phaeozem, and Chernozem, were collected at 451 locations in Nongan County under maize monoculture in the Song-Nen Plain, Northeast China. The spatial characteristics of soil organic carbon were studied, using geographic information systems (GIS) and geostatistics. Effects of other soil physical and chemical properties, elevation, slope, and soil type on SOC were explored. SOC concentrations followed a normal distribution, with an arithmetic mean of 14.91 g kg-1 . The experimental variogram of SOC was fitted with a spherical model. There were significant correlations between soil organic carbon and bulk density (r =-0.374**), pH (r = 0.549**), total nitrogen (r = 0.781**), extractable phosphorus (r =-0.109*), exchangeable potassium (r = 0.565**), and cation exchange capacity (r = 0.313**). Generally, lower SOC concentrations were significantly associated with high elevation (r =-0.429**). Soil organic carbon was significantly negatively correlated with slope gradient (r =-0.195**). Samples of the Cambisol statistically had the highest SOC concentrations, and samples of the Arenosol had the lowest SOC value.
文摘Thermal analysis and thermal diagnose are important for small power connector especially in electronic devices since their structure is usually compact. In this paper thermal behavior of small power connector was investigated. It was found that the contact resistance increased due to the Joule beating, and that increased contact resistance produced more Joule heating; this mutual action causes the connector to lose efficiency. The thermal distribution in the connector was analyzed using finite element method (FEM). The failure mechanism is discussed. It provides basis for improving the structure. The conclusion was verified by experimental results.
文摘The general Lie point symmetry groups of the Nizhnik-Novikov-Vesselov (NNV) equation and the asymmetric NNV equation are given by a simple direct method with help of their weak Lax pairs.
基金Supported by the "948" Grant of the National Forestry Administration of China (No.2007-4-19)the Special Grantof Chinese Forestry Public Benefits (Nos.200804030 and 2007-4-15)the Provincial Fund for Distinguished Young Scholars of Hunan, China (No.07JJ1004)
文摘Soils play a critical role in the global carbon cycle, and can be major source or sink of CO2 depending upon land use, vegetation type and soil management practices. Fine roots are important component of a forest ecosystem in terms of water and nutrient uptake. In this study the effects of thinning and litter fall removal on fine root production and soil organic carbon content were examined in 20-year-old Masson pine (Pinus resinosa) plantations in Huitong, Hunan Province of China in the growing seasons of 2004 and 2005. The results showed that fine root production was significantly lower in the thinning plots than in the control plots, with a decrease of 58% and 14% in 2004 and 2005 growing seasons, respectively. Litter fall removal significantly increased fine root production by 14% in 2004. Soil temperature (Tsoil) and soil moisture (Msoil) were higher in the thinning plots than those in the controls. Litter fall removal had significant effects on Tsoil and Msoil. Soil organic carbon content was higher in the thinning plots but was lower in the plots with litter fall removal compared with that in the controls. Our results also indicated that annual production of fine roots resulted in small carbon accumulation in the upper layers of the soil, and removal of tree by thinning resulted in a significant increase of carbon storage in Masson pine plantations.
基金National Natural Science Foundation of China under Grant No.60572113the Natural Science Foundation of Shandong Province of China under Grant No.Q2006A04the Talents Foundation of Taishan College under Grant No.Y05-2-01
文摘By considering a new discrete isospectral eigenvalue problem, a hierarchy of lattice soliton equations of rational type are derived. It is shown that each equation in the resulting hierarchy is integrable in Liouville sense and possessing bi-Hamiltonian structure. Two types of semi-direct sums of Lie algebras are proposed, by using of which a practicable way to construct discrete integrable couplings is introduced. As applications, two kinds of discrete integrable couplings of the resulting system are worked out.