期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于有理双树复小波和SVM的滚动轴承故诊断方法
被引量:
2
1
作者
孙珊珊
何光辉
崔建
《计算机科学》
CSCD
北大核心
2015年第B11期131-134,共4页
滚动轴承故障类型被支持向量机(SVM)智能识别的关键是故障特征的提取。为了提取最优的故障特征,提高SVM的分类识别精度,提出了基于有理双树复小波和SVM的滚动轴承故障诊断方法。首先通过双树复小波包变换将非平稳的振动信号分解得到不...
滚动轴承故障类型被支持向量机(SVM)智能识别的关键是故障特征的提取。为了提取最优的故障特征,提高SVM的分类识别精度,提出了基于有理双树复小波和SVM的滚动轴承故障诊断方法。首先通过双树复小波包变换将非平稳的振动信号分解得到不同频带的分量,然后对每个分量求能量并作归一化处理,最后将从各个频带分量中提取的能量特征参数作为支持向量机的输入来识别滚动轴承的故障类型。研究结果表明该方法可以有效、准确地识别轴承的故障模式。
展开更多
关键词
有理双树复小波变换
特征提取
支持向量机
滚动轴承
故障分类
下载PDF
职称材料
题名
基于有理双树复小波和SVM的滚动轴承故诊断方法
被引量:
2
1
作者
孙珊珊
何光辉
崔建
机构
重庆大学数学与统计学院
出处
《计算机科学》
CSCD
北大核心
2015年第B11期131-134,共4页
基金
国家自然科学基金项目(61173030)资助
文摘
滚动轴承故障类型被支持向量机(SVM)智能识别的关键是故障特征的提取。为了提取最优的故障特征,提高SVM的分类识别精度,提出了基于有理双树复小波和SVM的滚动轴承故障诊断方法。首先通过双树复小波包变换将非平稳的振动信号分解得到不同频带的分量,然后对每个分量求能量并作归一化处理,最后将从各个频带分量中提取的能量特征参数作为支持向量机的输入来识别滚动轴承的故障类型。研究结果表明该方法可以有效、准确地识别轴承的故障模式。
关键词
有理双树复小波变换
特征提取
支持向量机
滚动轴承
故障分类
Keywords
Dual-tree rational-dilation complex wavelet transform, Feature extraction, SVM, Rolling bearing, Fault iden- tification
分类号
TH133.3 [机械工程—机械制造及自动化]
TH165 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于有理双树复小波和SVM的滚动轴承故诊断方法
孙珊珊
何光辉
崔建
《计算机科学》
CSCD
北大核心
2015
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部