期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于有理数多项式先验模型的图像盲去模糊 被引量:2
1
作者 李桐 胡绍海 +1 位作者 刘帅奇 孙宇恒 《电视技术》 北大核心 2015年第14期9-12,共4页
图像盲去模糊问题是当今图像处理领域的热点问题之一。基于混合高斯先验模型的变分贝叶斯去模糊算法可以有效地复原模糊图像,成为一种重要的图像去模糊算法。虽然混合高斯先验模型可以很好地逼近自然图像的梯度分布,但是该模型在图像梯... 图像盲去模糊问题是当今图像处理领域的热点问题之一。基于混合高斯先验模型的变分贝叶斯去模糊算法可以有效地复原模糊图像,成为一种重要的图像去模糊算法。虽然混合高斯先验模型可以很好地逼近自然图像的梯度分布,但是该模型在图像梯度值较大处往往会产生过拟合导致去模糊后的图像产生振铃效应,严重影响了图像可读性。利用有理数多项式先验模型代替混合高斯模型逼近自然图像的梯度分布,克服算法的上述缺点。有理数多项式函数的分母多项式强制函数在梯度值较大值时平滑,所以有效地避免了过拟合现象的发生,从而使得模糊核估计得更准确,减少振铃效应。实验结果表明了算法的可行性和有效性。 展开更多
关键词 图像盲复原 运动去模糊 有理数多项式函数 自然图像梯度分布 振铃效应
下载PDF
DETERMINING WHETHER A MULTIVARIATE HYPEREXPONENTIAL FUNCTION IS ALGEBRAIC*
2
作者 Ziming LI Dabin ZHENG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2006年第3期352-364,共13页
Let F=C(x1,x2,…,xe,xe+1,…,xm), where x1, x2,… , xe are differential variables, and xe+1,…,xm are shift variables. We show that a hyperexponential function, which is algebraic over F,is of form g(x1, x2, …,xm... Let F=C(x1,x2,…,xe,xe+1,…,xm), where x1, x2,… , xe are differential variables, and xe+1,…,xm are shift variables. We show that a hyperexponential function, which is algebraic over F,is of form g(x1, x2, …,xm)q(x1,x2,…,xe)^1/lwe+1^xe+1…wm^xm, where g∈ F, q ∈ C(x1,x2,…,xe),t∈Z^+ and we+1,…,wm are roots of unity. Furthermore,we present an algorithm for determining whether a hyperexponential function is algebraic over F. 展开更多
关键词 Algebraic functions hyperexponential functions rational certificates rational normal forms.
原文传递
Determination of the limits for multivariate rational functions
3
作者 XIAO ShuiJing ZENG GuangXing 《Science China Mathematics》 SCIE 2014年第2期397-416,共20页
The purpose of this paper is to solve the problem of determining the limits of multivariate rational functions.It is essential to decide whether or not limxˉ→0f g=0 for two non-zero polynomials f,g∈R[x1,...,xn]with... The purpose of this paper is to solve the problem of determining the limits of multivariate rational functions.It is essential to decide whether or not limxˉ→0f g=0 for two non-zero polynomials f,g∈R[x1,...,xn]with f(0,...,0)=g(0,...,0)=0.For two such polynomials f and g,we establish two necessary and sufcient conditions for the rational functionf g to have its limit 0 at the origin.Based on these theoretic results,we present an algorithm for deciding whether or not lim(x1,...,xn)→(0,...,0)f g=0,where f,g∈R[x1,...,xn]are two non-zero polynomials.The design of our algorithm involves two existing algorithms:one for computing the rational univariate representations of a complete chain of polynomials,another for catching strictly critical points in a real algebraic variety.The two algorithms are based on the well-known Wu’s method.With the aid of the computer algebraic system Maple,our algorithm has been made into a general program.In the final section of this paper,several examples are given to illustrate the efectiveness of our algorithm. 展开更多
关键词 rational function LIMIT infinitesimal element strictly critical point rational univariate represen-tation (RUR) Wu's method transfer principle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部