K lein-Gordon-Schr d inger(KGS)方程是出现在某些物理问题中一类重要方程,对它的解的理论和有界区域问题的数值解法已有不少研究,但对于无界区域问题的数值方法研究甚少.讨论具弱阻尼的KGS方程的Cauchy问题,采用Chebyshev有理谱方法...K lein-Gordon-Schr d inger(KGS)方程是出现在某些物理问题中一类重要方程,对它的解的理论和有界区域问题的数值解法已有不少研究,但对于无界区域问题的数值方法研究甚少.讨论具弱阻尼的KGS方程的Cauchy问题,采用Chebyshev有理谱方法进行讨论,构造了全离散的Chebyshev有理谱格式,并通过对近似解的一系列先验估计,最后得到了近似解的误差估计.展开更多
An orthogonal system of rational functions is derived from the mapped Laguerre polynomials,which is used for numerical solution of singular differential equations.A model problem is considered.A multiple-step algorith...An orthogonal system of rational functions is derived from the mapped Laguerre polynomials,which is used for numerical solution of singular differential equations.A model problem is considered.A multiple-step algorithm is developed to implement this method.Numerical results show the efficiency of this new approach.展开更多
文摘K lein-Gordon-Schr d inger(KGS)方程是出现在某些物理问题中一类重要方程,对它的解的理论和有界区域问题的数值解法已有不少研究,但对于无界区域问题的数值方法研究甚少.讨论具弱阻尼的KGS方程的Cauchy问题,采用Chebyshev有理谱方法进行讨论,构造了全离散的Chebyshev有理谱格式,并通过对近似解的一系列先验估计,最后得到了近似解的误差估计.
基金The National Science Foundation (10471095)The fund of Shanghai Municipal Education Commission (04DB15)+1 种基金The Shanghai Leading Academic Discipline Project (T0401)The Science Foundation of Shanghai (04JC14062)
基金The work of this author is supported by The Foundation of CAEP 20030658)The work of this author is partially supported by The Shanghai Natural Science Foundation N.00JC14057+1 种基金The Shanghai Natural Science Foundation for Youth N. 01QN85.The work of thi
文摘An orthogonal system of rational functions is derived from the mapped Laguerre polynomials,which is used for numerical solution of singular differential equations.A model problem is considered.A multiple-step algorithm is developed to implement this method.Numerical results show the efficiency of this new approach.