K lein-Gordon-Schr d inger(KGS)方程是出现在某些物理问题中一类重要方程,对它的解的理论和有界区域问题的数值解法已有不少研究,但对于无界区域问题的数值方法研究甚少.讨论具弱阻尼的KGS方程的Cauchy问题,采用Chebyshev有理谱方法...K lein-Gordon-Schr d inger(KGS)方程是出现在某些物理问题中一类重要方程,对它的解的理论和有界区域问题的数值解法已有不少研究,但对于无界区域问题的数值方法研究甚少.讨论具弱阻尼的KGS方程的Cauchy问题,采用Chebyshev有理谱方法进行讨论,构造了全离散的Chebyshev有理谱格式,并通过对近似解的一系列先验估计,最后得到了近似解的误差估计.展开更多
In thc paper, the nonperidic initial value problem for a class of semilinear parabolic equations is considered. We construct the full discrete Chebyshev pseu- dospectral scheme and analyze the error of approximate sol...In thc paper, the nonperidic initial value problem for a class of semilinear parabolic equations is considered. We construct the full discrete Chebyshev pseu- dospectral scheme and analyze the error of approximate solution for it. We obtain the error estimation on large time using the local continuation method and the existence of approximate global attractor. This method can be applied to other nonlinear problems too.展开更多
文摘K lein-Gordon-Schr d inger(KGS)方程是出现在某些物理问题中一类重要方程,对它的解的理论和有界区域问题的数值解法已有不少研究,但对于无界区域问题的数值方法研究甚少.讨论具弱阻尼的KGS方程的Cauchy问题,采用Chebyshev有理谱方法进行讨论,构造了全离散的Chebyshev有理谱格式,并通过对近似解的一系列先验估计,最后得到了近似解的误差估计.
文摘In thc paper, the nonperidic initial value problem for a class of semilinear parabolic equations is considered. We construct the full discrete Chebyshev pseu- dospectral scheme and analyze the error of approximate solution for it. We obtain the error estimation on large time using the local continuation method and the existence of approximate global attractor. This method can be applied to other nonlinear problems too.