针对往复压缩机振动信号的强非平稳特性,提出了一种基于有理Hermite插值的局部均值分解(Local mean decomposition,LMD)方法。结合有理Hermite插值法的保形特性和曲线形状随参数可调特性,以其构建极值点间局部包络曲线。提出以极值对称...针对往复压缩机振动信号的强非平稳特性,提出了一种基于有理Hermite插值的局部均值分解(Local mean decomposition,LMD)方法。结合有理Hermite插值法的保形特性和曲线形状随参数可调特性,以其构建极值点间局部包络曲线。提出以极值对称点为依据的局部包络线优选方法,进而提高局部均值与包络估计的拟合逼近精度。给出了有理Hermite插值LMD方法的算法与流程。利用仿真数据,通过与不同插值方法比较,验证了有理Hermite插值LMD方法拟合逼近性能的优越性。以往复压缩机轴承故障振动信号为研究对象,应用有理Hermite插值LMD方法实现了轴承间隙大故障的准确诊断,验证了该方法对强非平稳信号的适用性。展开更多
文摘针对往复压缩机振动信号的强非平稳特性,提出了一种基于有理Hermite插值的局部均值分解(Local mean decomposition,LMD)方法。结合有理Hermite插值法的保形特性和曲线形状随参数可调特性,以其构建极值点间局部包络曲线。提出以极值对称点为依据的局部包络线优选方法,进而提高局部均值与包络估计的拟合逼近精度。给出了有理Hermite插值LMD方法的算法与流程。利用仿真数据,通过与不同插值方法比较,验证了有理Hermite插值LMD方法拟合逼近性能的优越性。以往复压缩机轴承故障振动信号为研究对象,应用有理Hermite插值LMD方法实现了轴承间隙大故障的准确诊断,验证了该方法对强非平稳信号的适用性。
基金Supported by the National Natural Science Foundation of China(60773128)the Natural Science Research Funds of Education Department of Anhui Province (KJ2009A123)