考虑非线性二阶中立型微分方程,[a(t)x(t)-∑ from i=1 to m (p_i(t)x(τi(t)))]″-∫from n=a to b (f(t,ξ,x[g(t,ξ)])dσ(ξ))=0,t≥t_0,和相应不等式[a(t)x(t)-∑ from i=1 to m (p_i(t)x(τi(t)))]″-∫from n=a to b (f(t,ξ,x[g...考虑非线性二阶中立型微分方程,[a(t)x(t)-∑ from i=1 to m (p_i(t)x(τi(t)))]″-∫from n=a to b (f(t,ξ,x[g(t,ξ)])dσ(ξ))=0,t≥t_0,和相应不等式[a(t)x(t)-∑ from i=1 to m (p_i(t)x(τi(t)))]″-∫from n=a to b (f(t,ξ,x[g(t,ξ)])dσ(ξ))≥0,t≥t_0.存在正解是相互等价的.其中a(t),pi(t)∈C([t0,∞),R+),a(t)>0,τi(t)∈C(R^+,R^+),τi(t)t,limt→∞τi(t)=∞(i=1,2,…,m).g(t,ξ)∈C([t_0,∞)×[a,b],R+).g(t,ξ)是分别关于t和ξ的增函数.g(t,ξ)t,ξ∈[a,b],limt→∞,ξ∈[a,b]g(t,ξ)=∞.f(t,ξ,x)∈C([t_0,∞)×[a,b]×R,R+).当x>0时,xf(t,ξ,x)>0.σ(ξ)∈C([a,b],R),且σ(ξ)非减.展开更多
文摘考虑非线性二阶中立型微分方程,[a(t)x(t)-∑ from i=1 to m (p_i(t)x(τi(t)))]″-∫from n=a to b (f(t,ξ,x[g(t,ξ)])dσ(ξ))=0,t≥t_0,和相应不等式[a(t)x(t)-∑ from i=1 to m (p_i(t)x(τi(t)))]″-∫from n=a to b (f(t,ξ,x[g(t,ξ)])dσ(ξ))≥0,t≥t_0.存在正解是相互等价的.其中a(t),pi(t)∈C([t0,∞),R+),a(t)>0,τi(t)∈C(R^+,R^+),τi(t)t,limt→∞τi(t)=∞(i=1,2,…,m).g(t,ξ)∈C([t_0,∞)×[a,b],R+).g(t,ξ)是分别关于t和ξ的增函数.g(t,ξ)t,ξ∈[a,b],limt→∞,ξ∈[a,b]g(t,ξ)=∞.f(t,ξ,x)∈C([t_0,∞)×[a,b]×R,R+).当x>0时,xf(t,ξ,x)>0.σ(ξ)∈C([a,b],R),且σ(ξ)非减.