G(p)和G(p→F(q))是有界模型检测(bounded model checking,简称BMC)中的两个重要的常用模态算子.对验证G(p)和G(p→F(q))编码转换公式进行优化.通过分析当验证这些模态算子时FSM(finite state machine)的状态转移和线性时序逻辑(linear-...G(p)和G(p→F(q))是有界模型检测(bounded model checking,简称BMC)中的两个重要的常用模态算子.对验证G(p)和G(p→F(q))编码转换公式进行优化.通过分析当验证这些模态算子时FSM(finite state machine)的状态转移和线性时序逻辑(linear-time temporal logic,简称LTL)的语义特征.在现有的编码公式的基础上,给出了简洁、高效的递推公式,该公式有利于高效编码成SAT(satisfiability)实例;证明了递推公式和原转换公式的逻辑关系.通过实验比较分析,在生成SAT实例规模和易求解方面都优于BMC中求解这些模态算子的现有的两种重要方法AA_BMC和Timo_BMC.所给出的方法和思想对于BMC中验证其他模态算子时的编码优化也有参考价值.展开更多
In order to find the completeness threshold which offers a practical method of making bounded model checking complete, the over-approximation for the complete threshold is presented. First, a linear logic of knowledge...In order to find the completeness threshold which offers a practical method of making bounded model checking complete, the over-approximation for the complete threshold is presented. First, a linear logic of knowledge is introduced into the past tense operator, and then a new temporal epistemic logic LTLKP is obtained, so that LTLKP can naturally and precisely describe the system's reliability. Secondly, a set of prior algorithms are designed to calculate the maximal reachable depth and the length of the longest of loop free paths in the structure based on the graph structure theory. Finally, some theorems are proposed to show how to approximate the complete threshold with the diameter and recurrence diameter. The proposed work resolves the completeness threshold problem so that the completeness of bounded model checking can be guaranteed.展开更多
文摘G(p)和G(p→F(q))是有界模型检测(bounded model checking,简称BMC)中的两个重要的常用模态算子.对验证G(p)和G(p→F(q))编码转换公式进行优化.通过分析当验证这些模态算子时FSM(finite state machine)的状态转移和线性时序逻辑(linear-time temporal logic,简称LTL)的语义特征.在现有的编码公式的基础上,给出了简洁、高效的递推公式,该公式有利于高效编码成SAT(satisfiability)实例;证明了递推公式和原转换公式的逻辑关系.通过实验比较分析,在生成SAT实例规模和易求解方面都优于BMC中求解这些模态算子的现有的两种重要方法AA_BMC和Timo_BMC.所给出的方法和思想对于BMC中验证其他模态算子时的编码优化也有参考价值.
文摘状态迁移矩阵(State Transition Matrix,STM)是一种基于表结构的程序建模语言。事件变量类型单一,事件和状态数量的增加很容易造成状态空间爆炸问题,无法表达具有时间语义的软件系统等原因,极大限制了该建模方法的推广应用。文中针对这些问题,首先提出层次化时间状态迁移矩阵(Hierarchical Time State Transition Matrix,HTSTM)模型,用于设计、建模和验证具有时间条件约束的软件系统,并给出形式化表示方法。基于该表示方法提出一种符号化编码方法,采用有界模型检测思想将需要验证的LTL性质输入SMT(Satisfiability Modulo Theories)求解器进行验证,从而在一定程度上证明了软件设计的正确性。
基金Supported by the National Natural Science Foundation of China under Grant No.60773049the Advanced Talent Foundation of Jiangsu University of China under Grant No.07JDG014the Fundamental Research Project of the Natural Science in Colleges of Jiangsu Province of China under Grant No.08KJD520015~~
基金The National Natural Science Foundation of China (No.10974093)the Scientific Research Foundation for Senior Personnel of Jiangsu University (No.07JDG014)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (No.08KJD520015)
文摘In order to find the completeness threshold which offers a practical method of making bounded model checking complete, the over-approximation for the complete threshold is presented. First, a linear logic of knowledge is introduced into the past tense operator, and then a new temporal epistemic logic LTLKP is obtained, so that LTLKP can naturally and precisely describe the system's reliability. Secondly, a set of prior algorithms are designed to calculate the maximal reachable depth and the length of the longest of loop free paths in the structure based on the graph structure theory. Finally, some theorems are proposed to show how to approximate the complete threshold with the diameter and recurrence diameter. The proposed work resolves the completeness threshold problem so that the completeness of bounded model checking can be guaranteed.