期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
非线性方程分歧理论中广义Lyapunov-Schmidt过程及应用 被引量:4
1
作者 孙秀梅 殷洪才 王玉文 《数学的实践与认识》 CSCD 北大核心 2003年第5期108-114,共7页
本文讨论带有参数的算子方程 f ( x,λ) =0的分歧问题 ,其中 f :X×Λ→ Y,X,Y为 Banach空间 ,Λ =R为参数空间 .利用 A =f′x( x0 ,λ0 )的有界线性广义逆 A+ ,引入广义 Lyapunov-Schmidt过程 ,当 A为 Fredholm算子时 ,这种广义 Ly... 本文讨论带有参数的算子方程 f ( x,λ) =0的分歧问题 ,其中 f :X×Λ→ Y,X,Y为 Banach空间 ,Λ =R为参数空间 .利用 A =f′x( x0 ,λ0 )的有界线性广义逆 A+ ,引入广义 Lyapunov-Schmidt过程 ,当 A为 Fredholm算子时 ,这种广义 Lyapunov-Schmidt过程就成为通常的 Lyapunov-Schmidt过程 .本文利用所引进的广义Lyapunov-Schmidt过程 ,证得关于抽象方程 f ( x,λ) =0的一个分歧定理 . 展开更多
关键词 线性方程 分歧理论 广义Lyapunov-Schmidt过程 算子方程 BANACH空间 参数空间 有界线性广义逆 FREDHOLM算子 双裂性 隐函数存在定理
原文传递
Generalized regular points of a C^1 map between Banach spaces
2
作者 史平 马吉溥 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期148-150,共3页
Let f be a C^1 map between two Banach spaces E and F. It has been proved that the concept of generalized regular points of f, which is a generalization of the notion of regular points of f, has some crucial applicatio... Let f be a C^1 map between two Banach spaces E and F. It has been proved that the concept of generalized regular points of f, which is a generalization of the notion of regular points of f, has some crucial applications in nonlinearity and global analysis. We characterize the generalized regular points of f using the three integer-valued (or infinite) indices M(x0), Mc(x0) and Mr(x0) at x0 ∈ E generated by f and by analyzing generalized inverses of bounded linear operators on Banach spaces, that is, iff '(x0) has a generalized inverse in the Banach space B(E, F) of all bounded linear operators on E into F and at least one of the indices M(x0), Mc(x0) and Mr(x0) is finite, then xo is a generalized regular point off if and only if the multi-index (M(x), Me(x), Mr(x)) is continuous at X0. 展开更多
关键词 Banach space bounded linear operator generalized inverse index generalized regular point semi- Fredholm mao
下载PDF
Operator Matrix Forms of Positive Operators 被引量:4
3
作者 杜鸿科 《Chinese Quarterly Journal of Mathematics》 CSCD 1992年第4期9-12,共4页
If a 3-tuple (A:H_1→H_1,B:H_2→H_1,C:H_2→H_2) of operators on Hilbert spaces is given,we proved that the operator A:= on H=H_1⊕H_2 is≥0 if and only if A≥0,R(B) R(A1/2)and C≥B~* A^+ B, where A^+ is the generalize... If a 3-tuple (A:H_1→H_1,B:H_2→H_1,C:H_2→H_2) of operators on Hilbert spaces is given,we proved that the operator A:= on H=H_1⊕H_2 is≥0 if and only if A≥0,R(B) R(A1/2)and C≥B~* A^+ B, where A^+ is the generalized inverse of A. In general,A^+ is a closed operator,but since R(B) R(A1/2),B~* A^+ B is bounded yet. 展开更多
关键词 positive operator range of operator
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部