Let f be a C^1 map between two Banach spaces E and F. It has been proved that the concept of generalized regular points of f, which is a generalization of the notion of regular points of f, has some crucial applicatio...Let f be a C^1 map between two Banach spaces E and F. It has been proved that the concept of generalized regular points of f, which is a generalization of the notion of regular points of f, has some crucial applications in nonlinearity and global analysis. We characterize the generalized regular points of f using the three integer-valued (or infinite) indices M(x0), Mc(x0) and Mr(x0) at x0 ∈ E generated by f and by analyzing generalized inverses of bounded linear operators on Banach spaces, that is, iff '(x0) has a generalized inverse in the Banach space B(E, F) of all bounded linear operators on E into F and at least one of the indices M(x0), Mc(x0) and Mr(x0) is finite, then xo is a generalized regular point off if and only if the multi-index (M(x), Me(x), Mr(x)) is continuous at X0.展开更多
If a 3-tuple (A:H_1→H_1,B:H_2→H_1,C:H_2→H_2) of operators on Hilbert spaces is given,we proved that the operator A:= on H=H_1⊕H_2 is≥0 if and only if A≥0,R(B) R(A1/2)and C≥B~* A^+ B, where A^+ is the generalize...If a 3-tuple (A:H_1→H_1,B:H_2→H_1,C:H_2→H_2) of operators on Hilbert spaces is given,we proved that the operator A:= on H=H_1⊕H_2 is≥0 if and only if A≥0,R(B) R(A1/2)and C≥B~* A^+ B, where A^+ is the generalized inverse of A. In general,A^+ is a closed operator,but since R(B) R(A1/2),B~* A^+ B is bounded yet.展开更多
基金The National Natural Science Foundation of China(No10271053)the Foundation of Nanjing University of Finance andEconomics (NoB0556)
文摘Let f be a C^1 map between two Banach spaces E and F. It has been proved that the concept of generalized regular points of f, which is a generalization of the notion of regular points of f, has some crucial applications in nonlinearity and global analysis. We characterize the generalized regular points of f using the three integer-valued (or infinite) indices M(x0), Mc(x0) and Mr(x0) at x0 ∈ E generated by f and by analyzing generalized inverses of bounded linear operators on Banach spaces, that is, iff '(x0) has a generalized inverse in the Banach space B(E, F) of all bounded linear operators on E into F and at least one of the indices M(x0), Mc(x0) and Mr(x0) is finite, then xo is a generalized regular point off if and only if the multi-index (M(x), Me(x), Mr(x)) is continuous at X0.
文摘If a 3-tuple (A:H_1→H_1,B:H_2→H_1,C:H_2→H_2) of operators on Hilbert spaces is given,we proved that the operator A:= on H=H_1⊕H_2 is≥0 if and only if A≥0,R(B) R(A1/2)and C≥B~* A^+ B, where A^+ is the generalized inverse of A. In general,A^+ is a closed operator,but since R(B) R(A1/2),B~* A^+ B is bounded yet.