期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
有监督不相关正交局部保持映射故障辨识 被引量:15
1
作者 李锋 王家序 杨荣松 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第5期1113-1120,共8页
提出基于有监督不相关正交局部保持映射(SUOLPP)维数化简的故障辨识方法。首先构造全面表征不同故障特征的时频域特征集,再利用SUOLLP将高维时频域特征集自动约简为具有更好区分度的低维特征矢量,并输入到Littlewood-Paley小波核支持向... 提出基于有监督不相关正交局部保持映射(SUOLPP)维数化简的故障辨识方法。首先构造全面表征不同故障特征的时频域特征集,再利用SUOLLP将高维时频域特征集自动约简为具有更好区分度的低维特征矢量,并输入到Littlewood-Paley小波核支持向量机中进行故障模式辨识。时频域特征融集可较全面准确地反映旋转机械的故障特征;SUOLPP同时利用流形局部几何结构和类标签来设计相似加权矩阵,并使输出基向量统计不相关和相互正交,提高了故障辨识精度。深沟球轴承故障诊断和空间轴承寿命状态辨识实例验证了该方法的有效性。 展开更多
关键词 时频域特征集 有监督不相关正交局部保持映射 维数化简 流形学习 故障辨识
下载PDF
局部自适应加权LSSVM在线建模方法及其在间歇过程中的应用 被引量:3
2
作者 高学金 孙鑫 《计算机与应用化学》 CAS CSCD 北大核心 2013年第7期753-758,共6页
目前的局部建模方法在构建样本间相似度的时候仅考虑了输入信息而忽略了输出信息的作用,并且没有考虑样本的权重问题。针对上述问题,提出了局部自适应加权最小二乘支持向量机(Local Adaptive Weight LSSVM,LAW-LSSVM)回归算法。该算法... 目前的局部建模方法在构建样本间相似度的时候仅考虑了输入信息而忽略了输出信息的作用,并且没有考虑样本的权重问题。针对上述问题,提出了局部自适应加权最小二乘支持向量机(Local Adaptive Weight LSSVM,LAW-LSSVM)回归算法。该算法采用同时考虑输入输出信息的相似性判据则来构建更加合理的相似样本集,利用有监督的局部保持映射(Supervised LocalityPreserving Projection,SLPP)算法对样本空间进行有效的降维和搜索最优的相似样本方向,实现了样本权重的在线调整。利用LAW-LSSVM对青霉素发酵过程中的产物浓度进行在线预测,仿真结果表明,包含了输入输出信息的相似度评价准则能够更准确的选择相似样本,较离线LSSVM以及局部LSSVM(LLSSVM)有着更高的预测精度、更好的泛化能力。 展开更多
关键词 局部建模 有监督局部保持映射 最小二乘支持向量机 间歇过程
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部