期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
高速铁路有砟与无砟轨道过渡段优化设计研究 被引量:2
1
作者 高志国 《铁道建筑》 北大核心 2016年第9期118-120,共3页
以大(同)西(安)高铁有砟轨道与CRTSⅠ型双块式无砟轨道过渡段为研究对象,开展轨道过渡段动力性能仿真计算,并以钢轨挠度变化率为评价指标分析过渡段有、无道砟粘结措施时的轮轨动力响应结果,从动力学角度对过渡段是否可以取消道砟粘结... 以大(同)西(安)高铁有砟轨道与CRTSⅠ型双块式无砟轨道过渡段为研究对象,开展轨道过渡段动力性能仿真计算,并以钢轨挠度变化率为评价指标分析过渡段有、无道砟粘结措施时的轮轨动力响应结果,从动力学角度对过渡段是否可以取消道砟粘结措施提出建议。 展开更多
关键词 高速铁路 有砟无砟过渡段 钢轨挠度变化率
下载PDF
京沪高速铁路黄河大桥有砟—无砟过渡段动力性能研究 被引量:6
2
作者 赵强 张欢 +2 位作者 涂英辉 许良善 刘海涛 《铁道建筑》 北大核心 2014年第6期138-141,共4页
高速铁路的建设经常会遇到不同轨下基础的过渡段,过渡段由于强度、刚度、沉降等差异的存在必然会引起轨道的变形,产生不平顺。对动车组300~350 km/h运行条件下京沪高速铁路济南黄河大桥有砟—无砟过渡段进行仿真分析,结合动态测试,评... 高速铁路的建设经常会遇到不同轨下基础的过渡段,过渡段由于强度、刚度、沉降等差异的存在必然会引起轨道的变形,产生不平顺。对动车组300~350 km/h运行条件下京沪高速铁路济南黄河大桥有砟—无砟过渡段进行仿真分析,结合动态测试,评估分析列车运行的安全性、轨道稳定性、动态平顺性,重点研究了桥上有砟与无砟轨道过渡轨道刚度的匹配。分析结果表明,桥上有砟轨道及过渡段轨道结构设计合理,可以满足高速铁路列车运行安全和舒适的要求。 展开更多
关键词 高速铁路 有砟无砟过渡 仿真分析
下载PDF
京沪高铁济南黄河桥有砟-无砟过渡段车-线-桥动力特性研究 被引量:5
3
作者 高芒芒 熊建珍 李伟 《钢结构》 北大核心 2015年第6期5-9,34,共6页
京沪高铁济南黄河桥主桥上采用有砟轨道,引桥上采用CRTS I型板式无砟轨道,有砟-无砟过渡段分界点位于32m简支箱梁梁端位置。建立"无砟线路-4跨32m无砟轨道线桥结构-4跨32m有砟轨道线桥结构-有砟轨道"动力分析模型,通过车-线-... 京沪高铁济南黄河桥主桥上采用有砟轨道,引桥上采用CRTS I型板式无砟轨道,有砟-无砟过渡段分界点位于32m简支箱梁梁端位置。建立"无砟线路-4跨32m无砟轨道线桥结构-4跨32m有砟轨道线桥结构-有砟轨道"动力分析模型,通过车-线-桥垂向动力性能分析,考察不同轨道平顺状态、不同道床刚度以及不同车速下380AL动车组通过时的轨道结构和车辆运行品质。结果表明,过渡段区域的刚度变化引起了轮轨之间的冲击,道床刚度增大对车体加速度无明显影响,但会引起构架加速度和轴箱加速度的增大,且随车速提高影响更为显著。 展开更多
关键词 有砟轨道 无砟轨道 有砟-无砟过渡 道床刚度 不平顺 行车安全性 轴箱加速度
下载PDF
铁路道床有砟-无砟过渡段动力特性的DEM-FEM耦合分析 被引量:2
4
作者 邵帅 吕泉江 +1 位作者 严颖 季顺迎 《计算力学学报》 EI CAS CSCD 北大核心 2018年第6期683-690,共8页
针对铁路道床有砟-无砟过渡段的结构特点,采用离散元-有限元耦合模型分析散体道砟和无砟道床间过渡段的动力特性。散体道砟道床和无砟道床分别采用离散元方法 DEM和有限元方法 FEM模拟,而在过渡段将道砟颗粒嵌入无砟道床以增加道砟颗粒... 针对铁路道床有砟-无砟过渡段的结构特点,采用离散元-有限元耦合模型分析散体道砟和无砟道床间过渡段的动力特性。散体道砟道床和无砟道床分别采用离散元方法 DEM和有限元方法 FEM模拟,而在过渡段将道砟颗粒嵌入无砟道床以增加道砟颗粒与无砟道床间的咬合力,并在离散元和有限元耦合区域实现了力学参数的传递。采用以上DEM-FEM耦合方法对有砟-无砟道床及其过渡段在列车荷载作用下的沉降过程进行了数值分析。计算结果表明,离散元方法中道砟颗粒间的力链呈现非对称梯形分布,其与有限元方法中的应力分布趋势一致;采用嵌入式道砟颗粒的方法可以增加有砟-无砟过渡段道砟间的咬合力,有效约束道砟颗粒的位移,减少有砟-无砟道床间的沉降差异。本文计算模型可以合理地分析有砟道床的力链分布以及无砟道床的应力分布,确定列车荷载下道床有砟-无砟过渡段的动力学行为。 展开更多
关键词 离散元方法 有限元方法 有砟-无砟过渡 铁路道床
下载PDF
重载铁路有砟-无砟轨道过渡段动力学特性
5
作者 张利 《铁道建筑》 北大核心 2020年第6期128-131,共4页
重载铁路不同形式的轨道连接处过渡段因刚度突变,易导致线路病害。建立重载铁路有砟-无砟轨道过渡段有限元模型,研究了过渡段位置、过渡段刚度分级以及支承层延伸长度对重载铁路有砟-无砟轨道过渡段动力学响应的影响。研究结果表明:为... 重载铁路不同形式的轨道连接处过渡段因刚度突变,易导致线路病害。建立重载铁路有砟-无砟轨道过渡段有限元模型,研究了过渡段位置、过渡段刚度分级以及支承层延伸长度对重载铁路有砟-无砟轨道过渡段动力学响应的影响。研究结果表明:为减小重载铁路过渡段荷载冲击效应对下部基础的影响,宜将有砟-无砟轨道过渡段设置在路基上;从减小过渡段轮轨冲击、延长轨道结构使用寿命以及减少过渡段病害产生的角度分析,过渡段应设置轨道结构分级过渡,同时设置支承层,支承层延伸至有砟轨道长度应在10 m左右,超过10 m后作用不明显。 展开更多
关键词 重载铁路 有砟-无砟轨道过渡 有限元分析 轨道钢度 动力学
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部