Power line communication technology is used in various applications, from high voltage network to the low voltage network, as it is the only wired communication technology that is comparable with wireless communicatio...Power line communication technology is used in various applications, from high voltage network to the low voltage network, as it is the only wired communication technology that is comparable with wireless communication network. It works by injecting a modulated carrier wave into the electric cables from one transceiver to another. But still, the noise level and impedance mismatch are still the main concern of this technology, particularly in the low voltage network in residential area. Power line has additive non-white noise and extremely harsh environment for communication. At the same time, there is signal attenuation along the power line caused by the impedance mismatch in the power line network. Even though these problems can be controlled using a band-pass filter and an impedance matching circuit respectively, but the impedances in the power line are time and location variant and it is rather difficult to design a circuit that allows maximum power transfer in the system all the time. Thus in this paper, a new adaptive impedance matching circuits is proposed for narrowband power line communication. This methodology is derived based on the RLC band-pass filter circuit. This concept is designed to achieve simpler configuration and higher matching resolution.展开更多
The dynamic behaviour of power line cables have been a source of interest to researchers ever since the phenomenon was first noticed in the 1920s. Conductor oscillation is mostly caused by the dynamic forces of nature...The dynamic behaviour of power line cables have been a source of interest to researchers ever since the phenomenon was first noticed in the 1920s. Conductor oscillation is mostly caused by the dynamic forces of nature such as wind loading. This imposes a periodic force on the conductors which is highly undesirable. It is therefore important for engineers to account for the possible effect of the wind loading when designing the power line. Investigations have shown that modeling the exact dynamic behaviour of a conductor is very difficult. Based on this fact, getting the exact analytical solution to conductor vibration is difficult, which is almost impossible, hence the numerical approximation becomes an option. This paper presents the developed finite element method used to analyse the dynamic behaviour of transmission line conductors. The developed FEM (finite element method) is implemented on MATLAB. The numerical analysis using MATLAB that is presented in this paper is used to simulate the response of the conductor when subjected to external loading in the time domain. The simulation is used to analyse the transverse vibration of the conductor. The formulation of the stiffness matrix and load vector is done and the results obtained are used to evaluate the conductor's internal energy dissipation. This finite element solution is compared with the results documented in literature. This numerical simulation is also used to investigate the effects of varying the axial tension on energy dissipation within the strands. Hence, this evolved in physically appropriate energy characterization process that can be used to evaluate the conductor self-damping with respect to line contact.展开更多
文摘Power line communication technology is used in various applications, from high voltage network to the low voltage network, as it is the only wired communication technology that is comparable with wireless communication network. It works by injecting a modulated carrier wave into the electric cables from one transceiver to another. But still, the noise level and impedance mismatch are still the main concern of this technology, particularly in the low voltage network in residential area. Power line has additive non-white noise and extremely harsh environment for communication. At the same time, there is signal attenuation along the power line caused by the impedance mismatch in the power line network. Even though these problems can be controlled using a band-pass filter and an impedance matching circuit respectively, but the impedances in the power line are time and location variant and it is rather difficult to design a circuit that allows maximum power transfer in the system all the time. Thus in this paper, a new adaptive impedance matching circuits is proposed for narrowband power line communication. This methodology is derived based on the RLC band-pass filter circuit. This concept is designed to achieve simpler configuration and higher matching resolution.
文摘The dynamic behaviour of power line cables have been a source of interest to researchers ever since the phenomenon was first noticed in the 1920s. Conductor oscillation is mostly caused by the dynamic forces of nature such as wind loading. This imposes a periodic force on the conductors which is highly undesirable. It is therefore important for engineers to account for the possible effect of the wind loading when designing the power line. Investigations have shown that modeling the exact dynamic behaviour of a conductor is very difficult. Based on this fact, getting the exact analytical solution to conductor vibration is difficult, which is almost impossible, hence the numerical approximation becomes an option. This paper presents the developed finite element method used to analyse the dynamic behaviour of transmission line conductors. The developed FEM (finite element method) is implemented on MATLAB. The numerical analysis using MATLAB that is presented in this paper is used to simulate the response of the conductor when subjected to external loading in the time domain. The simulation is used to analyse the transverse vibration of the conductor. The formulation of the stiffness matrix and load vector is done and the results obtained are used to evaluate the conductor's internal energy dissipation. This finite element solution is compared with the results documented in literature. This numerical simulation is also used to investigate the effects of varying the axial tension on energy dissipation within the strands. Hence, this evolved in physically appropriate energy characterization process that can be used to evaluate the conductor self-damping with respect to line contact.