期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
3M^3铲运机无内胎轮改有内胎轮试验及应用
1
作者 吴景 《有色金属(矿山部分)》 1999年第3期27-28,共2页
文章介绍了进口3m3铲运机无内胎的改进试验情况及应用效果。
关键词 铲运机 无内 使用寿命 有胎轮 试验
下载PDF
Analysis of Static Temperature Field of Vehicle's Solid Rubber Tire 被引量:8
2
作者 郑慕侨 崔玉福 孙逢春 《Journal of Beijing Institute of Technology》 EI CAS 1998年第2期135-140,共6页
Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature... Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT. 展开更多
关键词 static temperature field solid rubber tire FE analysis
下载PDF
Adsorption Characteristics of Activated Carbon Derived from Scrap Tires for Malachite Green:Influence of Small Organics 被引量:2
3
作者 李丽 刘玉静 +2 位作者 王佳平 刘双喜 朱坦 《Transactions of Tianjin University》 EI CAS 2013年第6期425-429,共5页
The influence of small organics on the adsorption characteristics of activated carbon produced from industrial pyrolytic tire char(APTC)for malachite green(MG) was investigated by a batch method. Phenol was chosen as ... The influence of small organics on the adsorption characteristics of activated carbon produced from industrial pyrolytic tire char(APTC)for malachite green(MG) was investigated by a batch method. Phenol was chosen as the representative of small organics. The effects of phenol on adsorption equilibrium, kinetics and thermodynamics were studied systematically. The results indicate that APTC is a potential adsorbent for MG. The presence of phenol decreases the adsorption capacity of APTC for MG, but improves the rate of adsorption, while the adsorption characteristics, such as equilibrium, kinetics and thermodynamics are not affected by phenol. The adsorption equilibrium data follow Langmuir isotherm and the kinetic data are well described by the pseudo-second-order kinetic model. The adsorption process follows intra-particle diffusion model and the adsorption rate is determined by more than one process. Thermodynamic study shows that the adsorption is an endothermic and spontaneous physisorption process. 展开更多
关键词 activated carbon scrap tire pyrolytic tire char adsorption malachite green phenol
下载PDF
Numerical simulation of tire/soil interaction using a verified 3D finite element model 被引量:6
4
作者 Namjoo Moslem Golbakhshi Hossein 《Journal of Central South University》 SCIE EI CAS 2014年第2期817-821,共5页
The compaction and stress generation on terrain were always investigated based on empirical approaches or testing methods for tire/soil interaction.However,the analysis should be performed for various tires and at dif... The compaction and stress generation on terrain were always investigated based on empirical approaches or testing methods for tire/soil interaction.However,the analysis should be performed for various tires and at different soil strengths.With the increasing capacity of numerical computers and simulation software,finite element modeling of tire/terrain interaction seems a good approach for predicting the effect of change on the parameters.In this work,an elaborated 3D model fully complianning with the geometry of radial tire 115/60R13 was established,using commercial code Solidwork Simulation.The hyper-elastic and incompressible rubber as tire main material was analyzed by Moony-Rivlin model.The Drucker-Prager yield criterion was used to model the soil compaction.Results show that the model realistically predicts the laboratory tests outputs of the modeled tire on the soft soil. 展开更多
关键词 tire/soil interaction finite element method(FEM) soil compaction stress distribution inflation pressure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部