Twenty plots were investigated on northern slope of Changbai Mountain at an attitude interval of 100 m (from 700 to 2600 m). The species co-possession between plant communities at different altitudes was analyzed by J...Twenty plots were investigated on northern slope of Changbai Mountain at an attitude interval of 100 m (from 700 to 2600 m). The species co-possession between plant communities at different altitudes was analyzed by Jaccard index. The analytical results showed that the co-possession calculated according to species in different layers or all species between adjacent communities was higher than that between disjunct communities. The co-possessions between adjacent communities calculated by species in different layers had comparability and dissimilarity. If the two adjacent communities belong to different types of vegetation, then their co-possession was lower. The peak values and valley values of species co-possession between communities along elevation gradient just matched vegetation gradient patterns, and species subrogation of shrubs had more obvious rule on northern slope of Changbai Mountain. Co-possessions between communities with same altitude difference were much similar, and it decreased as the increase of elevation difference, which showed that species compositions in different layers of the communities were highly related.展开更多
A litter bag study of needle (Abies veitchii Lindl. and A. mariesi Mast.) and leaf litter (Betula ermanii Cham. and B. corylifolia Regal. et Maxim.) conducted in a coniferous forest of Mt. Ontake, Japan showed the sim...A litter bag study of needle (Abies veitchii Lindl. and A. mariesi Mast.) and leaf litter (Betula ermanii Cham. and B. corylifolia Regal. et Maxim.) conducted in a coniferous forest of Mt. Ontake, Japan showed the similar qualities of two type litters in later stages (after the 30th month). Although the difference in remaining mass between the two litters was larger in later stage of decomposition and initial concentration of nutrients was different. The concentrations of carbon (C) fraction and nutrients between the two types of litter tended to similar in the later stages. The similar concentration trend of nutrients was due to different mechanisms. Nitrogen (N) was due to immobilization of fungi and binding with lignin. K and Mg were leaching elements. They were very easily affected in leaching process. In the later stage, they reached a similar concentration because of a balance with the soil concentration. Ca is a construction element, so its behavior has closely related to that of C fractions. Moreover, C fractions were lignified or humuified and remained similar in later stage, Ca was also became similar in concentration in the later stage.展开更多
A study was conducted to evaluate the cultivable filamentous fungal diversity in organic layers (L, F, and H layers) and A1 layer of two main forest types, Pinus massoniana and Liguidambar formasana mixed forest and Q...A study was conducted to evaluate the cultivable filamentous fungal diversity in organic layers (L, F, and H layers) and A1 layer of two main forest types, Pinus massoniana and Liguidambar formasana mixed forest and Quercus variabilis forest, in Zijin Mountain(325?N, 11848?E), Nanjing, China. A total of 67 taxa comprising 56 Deuteromycetes, 3 Zygomycetes, 5 Asco-mycetes and 3 unidentified fungi were recognized from samples from the forest floor of the two forest types. The most abundant group was Deuteromycetes. The dominant genera in both forests were Alternaria sp., Aspergillus sp., Cladosporium sp., Mucor sp., Penicillium sp., Rhizopus sp., Gliocladium sp. and Trichoderma spp. The fungal diversity was higher in the mixed forest than that in Q. variabilis forest. For both forest types, the maximum fungal diversity was found in layer F and there existed significantly different in fungal diversity between layer F and layer L. In the mixed forest, richness of fungi isolated from needle litter (P. massoniana) was lower than that from leaf litter (L. formasana). The richness of fungi from needle litter increased with the in-crease of forest floor depth, but for leaf litter, the fungal diversity decreased with the depth of forest floor. The co-species of fungi from the two forest types, as well as from two kinds of litters in mixed forest, increased with the depth of the forest floor. The succession of fungi along with the process of decomposition was discussed here. The results also showed that litter quality was a critical factor affecting fungal diversity.展开更多
Little attention has been paid to the role of soil organic matter (OM) in the formation of pedogenic carbonate in desert soils. The relationships among soil OM, soil dehydrogenase activity (DHA), and soil CaCO3 in...Little attention has been paid to the role of soil organic matter (OM) in the formation of pedogenic carbonate in desert soils. The relationships among soil OM, soil dehydrogenase activity (DHA), and soil CaCO3 in a plant community dominated by Artemisia ordosica, located on the eastern boundary of Tcngger Desert in the Alxa League, Inner Mongolia, China, were studied to understand whether OM was directly involved in the formation of pedogenic carbonate. The results showed that DHA and CuCO3 positively correlated with OM content, and DHA, OM, and CaCO3 were correlated with each other in their spatial distribution, indicating that abundant OM content contributed to the formation of CaCO3. Therefore, the formation of pedogenic CaCO3 was a biotic process in the plant community dominated by A. ordosica.展开更多
Microbial fuel cells (MFCs) rely on microbial conversion of organic substrates to electricity. The optimal perfor- mance depends on the establishment of a microbial community rich in electrogenic bacteria. Usually t...Microbial fuel cells (MFCs) rely on microbial conversion of organic substrates to electricity. The optimal perfor- mance depends on the establishment of a microbial community rich in electrogenic bacteria. Usually this micro- bial community is established from inoculation of the MFC anode chamber with naturally occurring mixed inocula. In this study, the electrochemical performance of MFCs and microbial community evolution were eval- uated for three inocula including domestic wastewater (DW), lake sediment (LS) and biogas sludge (BS) with varying substrate loading (Lsub) and external resistance (Rext) on the MFC. The electrogenic bacterium Geobacter sulfurreducens was identified in all inocula and its abundance during MFC operation was positively linked to the MFC performance. The IS inoculated MFCs showed highest abundance (18% ± 1%) of G. sulfurreducens, maximum current density [Imax = (690 ± 30) mA.m 2] and coulombic efficiency (CE = 29% ±1%) with acetate as the substrate./max and CE increased to (1780 ± 30) mA.m-2 and 58%± 1%, respectively, after decreasing the Rext from 1000 Ωto 200 Ω, which also correlated to a higher abundance ofG. sulfurreducens (21% ±0.7%) on the MFC anodic biofilm. The data obtained contribute to understanding the microbial community response to Lsub and Roy, for of timizing electricity eneration in MFCs.展开更多
Soils play a critical role in the global carbon cycle, and can be major source or sink of CO2 depending upon land use, vegetation type and soil management practices. Fine roots are important component of a forest ecos...Soils play a critical role in the global carbon cycle, and can be major source or sink of CO2 depending upon land use, vegetation type and soil management practices. Fine roots are important component of a forest ecosystem in terms of water and nutrient uptake. In this study the effects of thinning and litter fall removal on fine root production and soil organic carbon content were examined in 20-year-old Masson pine (Pinus resinosa) plantations in Huitong, Hunan Province of China in the growing seasons of 2004 and 2005. The results showed that fine root production was significantly lower in the thinning plots than in the control plots, with a decrease of 58% and 14% in 2004 and 2005 growing seasons, respectively. Litter fall removal significantly increased fine root production by 14% in 2004. Soil temperature (Tsoil) and soil moisture (Msoil) were higher in the thinning plots than those in the controls. Litter fall removal had significant effects on Tsoil and Msoil. Soil organic carbon content was higher in the thinning plots but was lower in the plots with litter fall removal compared with that in the controls. Our results also indicated that annual production of fine roots resulted in small carbon accumulation in the upper layers of the soil, and removal of tree by thinning resulted in a significant increase of carbon storage in Masson pine plantations.展开更多
This study was conducted to examine the responses of earthworms to soil organic matter and litter at different decomposition stages and their contributions in litter decomposition processes in southern subtropical are...This study was conducted to examine the responses of earthworms to soil organic matter and litter at different decomposition stages and their contributions in litter decomposition processes in southern subtropical areas of China. Two plantations were selected as the study sites: Site I was dominated by the exotic endogeic earthworm species Ocnerodrilus occidentalis; Site II was dominated by epigeic species Amynthas corticis. After the fallen litter and earthworms were removed or expelled, four treatments were set up as: reserving the top soil (0–5 cm, equal to H layer) (H), removing the top soil and adding fresh litter (Le), removing the top soil and adding semi-decomposed litter (Li), and a control with no top soil nor any litter (CK). Five randomized blocks that were enclosed with nylon nets on the top were set up in each site, and then the four treatments were arranged randomly in each block. After 2–3 months, earthworms were collected using the formalin method. The results showed that Ocnerodrilus occidentalis preferred Treatment H though it was found in Treatments Le and Li as well; Amynthas corticis preferred Treatment Li though sometimes it also appeared in Treatment H; and Amynthas sp., another epigeic species, was mainly present under Treatment Le and only appeared in Treatment H occasionally. These findings confirmed that earthworm species belonging to different ecological groups had different responses to organic matter at different decomposition stages. The impacts of earthworm communities dominated by O. occidentalis mainly appeared at the later periods of litter decomposition.展开更多
Rapid spread and growth of plants that are poisonous to animals produce large amounts of plant litter in degraded grasslands.Nitrogen(N)input may promote the growth of these poisonous plants and alter the rhizosphere ...Rapid spread and growth of plants that are poisonous to animals produce large amounts of plant litter in degraded grasslands.Nitrogen(N)input may promote the growth of these poisonous plants and alter the rhizosphere microbes and arbuscular mycorrhizal fungi(AMF)in particular.However,it is unclear how poisonous plant litter affects the growth of palatable plants and their associated AMF in the rhizosphere and whether and how N deposition may mediate these effects.A greenhouse experiment was performed to test the combined effects of litter addition of a poisonous plant,Stellera chamaejasme,and N addition on the growth of a dominant grass,Leymus chinensis,AMF characteristics and soil properties.Litter addition significantly increased the ramet number and aboveground biomass of L.chinensis and soil available phosphorus(AP)concentration and decreased the spore density of AMF.However,the interaction of both treatments had no significant effects on traits of L.chinensis and AMF properties.Stellera chamaejasme liter positively affected L.chinensis by increasing AP and negatively affected AMF by combining balanced changes in soil nutrients and litter-induced allelopathic compositions.High N addition may alleviate soil N limitation and inhibit litter decomposition,thus overriding the litter's effects on L.chinensis and AMF.These findings imply that it is necessary to objectively and comprehensively evaluate the ecological functions of poisonous plants beyond their harmful effects on livestock.Simultaneously,N deposition should be an indispensable factor in predicting the relationships between poisonous plants and edible plants indegraded grasslands.展开更多
This study investigated the influence of broadleaf and conifer vegetation on soil microbial communities in a distinct vertical distribution belt in Northeast China.Soil samples were taken at 0-5,5-10 and 10-20 cm dept...This study investigated the influence of broadleaf and conifer vegetation on soil microbial communities in a distinct vertical distribution belt in Northeast China.Soil samples were taken at 0-5,5-10 and 10-20 cm depths from four vegetation types at different altitudes,which were characterized by poplar(Populus davidiana)(1250-1300 m),poplar(P.davidiana) mixed with birch(Betula platyphylla)(1370-1550 m),birch(B.platyphylla)(1550-1720 m),and larch(Larix principis-rupprechtii)(1840-1890 m).Microbial biomass and community structure were determined using the fumigation-extraction method and phospholipid fatty acid(PLFA) analysis,and soil fungal community level physiological profiles(CLPP) were characterized using Biolog FF Microplates.It was found that soil properties,especially soil organic carbon and water content,contributed significantly to the variations in soil microbes.With increasing soil depth,the soil microbial biomass,fungal biomass,and fungal catabolic ability diminished;however,the ratio of fungi to bacteria increased.The fungal ratio was higher under larch forests compared to that under poplar,birch,and their mixed forests,although the soil microbial biomass was lower.The direct contribution of vegetation types to the soil microbial community variation was 12%.If the indirect contribution through soil organic carbon was included,variations in the vegetation type had substantial influences on soil microbial composition and diversity.展开更多
Restoration of forests poses a major challenge globally, particularly in the tropics, as the forests in these regions are more vulnerable to land-use change. We studied land-use change from natural forest(NF) to degra...Restoration of forests poses a major challenge globally, particularly in the tropics, as the forests in these regions are more vulnerable to land-use change. We studied land-use change from natural forest(NF) to degraded forest(DF), and subsequently to either Jatropha curcas plantation(JP) or agroecosystem(AG), in the dry tropics of Uttar Pradesh, India, with respect to its impacts on soil microbial community composition as indicated by phospholipid fatty acid(PLFA) biomarkers and soil organic carbon(SOC) content. The trend of bacterial PLFAs across all land-use types was in the order: NF > JP > DF> AG. In NF, there was dominance of gram-negative bacterial(G^-) PLFAs over the corresponding gram-positive bacterial(G^+) PLFAs. The levels of G^- PLFAs in AG and JP differed significantly from those in DF, whereas those of G^+ PLFAs were relatively similar in these three land-use types. Fungal PLFAs,however, followed a different trend: NF > JP > DF = AG. Total PLFAs, fungal/bacterial(F/B) PLFA ratio, and SOC content followed trends similar to that of bacterial PLFAs. Across all land-use types, there were strong positive relationships between SOC content and G-, bacterial, fungal, and total microbial PLFAs and F/B PLFA ratio. Compared with bacterial PLFAs, fungal PLFAs appeared to be more responsive to land-use change. The F/B PLFA ratio, fungal PLFAs, and bacterial PLFAs explained 91%, 94%,and 73% of the variability in SOC content, respectively. The higher F/B PLFA ratio in JP favored more soil C storage, leading to faster ecosystem recovery compared to either AG or DF. The F/B PLFA ratio could be used as an early indicator of ecosystem recovery in response to disturbance, particularly in relation to land-use change.展开更多
Plant-derived carbon(C)inputs via foliar litter,root litter and root exudates are key drivers of soil organic C stocks.However,the responses of these three input pathways to climate warming have rarely been studied in...Plant-derived carbon(C)inputs via foliar litter,root litter and root exudates are key drivers of soil organic C stocks.However,the responses of these three input pathways to climate warming have rarely been studied in alpine shrublands.By employing a 3-year warming experiment(increased by 1.3℃),we investigated the effects of warming on the relative C contributions from foliar litter,root litter and root exudates from Sibiraea angustata,a dominant shrub species in an alpine shrubland on the eastern Qinghai-Tibetan Plateau.The soil organic C inputs from foliar litter,root litter and root exudates were 77.45,90.58 and 26.94 g C m^(-2),respectively.Warming only slightly increased the soil organic C inputs from foliar litter and root litter by 8.04 and 11.13 g C m^(-2),but significantly increased the root exudate C input by 15.40 g C m^(-2).Warming significantly increased the relative C contributions of root exudates to total C inputs by 4.6%but slightly decreased those of foliar litter and root litter by 2.5%and 2.1%,respectively.Our results highlight that climate warming may stimulate plant-derived C inputs into soils mainly through root exudates rather than litter in alpine shrublands on the Qinghai-Tibetan Plateau.展开更多
基金the Chinese Academy of Science (a grant KZCX2-406), National Natural Science Foundation of China (NSFC39970123), and Changbai Mo
文摘Twenty plots were investigated on northern slope of Changbai Mountain at an attitude interval of 100 m (from 700 to 2600 m). The species co-possession between plant communities at different altitudes was analyzed by Jaccard index. The analytical results showed that the co-possession calculated according to species in different layers or all species between adjacent communities was higher than that between disjunct communities. The co-possessions between adjacent communities calculated by species in different layers had comparability and dissimilarity. If the two adjacent communities belong to different types of vegetation, then their co-possession was lower. The peak values and valley values of species co-possession between communities along elevation gradient just matched vegetation gradient patterns, and species subrogation of shrubs had more obvious rule on northern slope of Changbai Mountain. Co-possessions between communities with same altitude difference were much similar, and it decreased as the increase of elevation difference, which showed that species compositions in different layers of the communities were highly related.
文摘A litter bag study of needle (Abies veitchii Lindl. and A. mariesi Mast.) and leaf litter (Betula ermanii Cham. and B. corylifolia Regal. et Maxim.) conducted in a coniferous forest of Mt. Ontake, Japan showed the similar qualities of two type litters in later stages (after the 30th month). Although the difference in remaining mass between the two litters was larger in later stage of decomposition and initial concentration of nutrients was different. The concentrations of carbon (C) fraction and nutrients between the two types of litter tended to similar in the later stages. The similar concentration trend of nutrients was due to different mechanisms. Nitrogen (N) was due to immobilization of fungi and binding with lignin. K and Mg were leaching elements. They were very easily affected in leaching process. In the later stage, they reached a similar concentration because of a balance with the soil concentration. Ca is a construction element, so its behavior has closely related to that of C fractions. Moreover, C fractions were lignified or humuified and remained similar in later stage, Ca was also became similar in concentration in the later stage.
基金This paper was supported by Chinese Program for High Technology Research and Development (2003AA209030) Scien-tific Research Foundation for doctoral supervising laboratory State Education Ministry (20030284044) and National Natural Sc
文摘A study was conducted to evaluate the cultivable filamentous fungal diversity in organic layers (L, F, and H layers) and A1 layer of two main forest types, Pinus massoniana and Liguidambar formasana mixed forest and Quercus variabilis forest, in Zijin Mountain(325?N, 11848?E), Nanjing, China. A total of 67 taxa comprising 56 Deuteromycetes, 3 Zygomycetes, 5 Asco-mycetes and 3 unidentified fungi were recognized from samples from the forest floor of the two forest types. The most abundant group was Deuteromycetes. The dominant genera in both forests were Alternaria sp., Aspergillus sp., Cladosporium sp., Mucor sp., Penicillium sp., Rhizopus sp., Gliocladium sp. and Trichoderma spp. The fungal diversity was higher in the mixed forest than that in Q. variabilis forest. For both forest types, the maximum fungal diversity was found in layer F and there existed significantly different in fungal diversity between layer F and layer L. In the mixed forest, richness of fungi isolated from needle litter (P. massoniana) was lower than that from leaf litter (L. formasana). The richness of fungi from needle litter increased with the in-crease of forest floor depth, but for leaf litter, the fungal diversity decreased with the depth of forest floor. The co-species of fungi from the two forest types, as well as from two kinds of litters in mixed forest, increased with the depth of the forest floor. The succession of fungi along with the process of decomposition was discussed here. The results also showed that litter quality was a critical factor affecting fungal diversity.
基金Project supported by the National Basic Research Program (973 Program) of China (No. 2007CB106802)the National Natural Science Foundation of China (No. 30970546)
文摘Little attention has been paid to the role of soil organic matter (OM) in the formation of pedogenic carbonate in desert soils. The relationships among soil OM, soil dehydrogenase activity (DHA), and soil CaCO3 in a plant community dominated by Artemisia ordosica, located on the eastern boundary of Tcngger Desert in the Alxa League, Inner Mongolia, China, were studied to understand whether OM was directly involved in the formation of pedogenic carbonate. The results showed that DHA and CuCO3 positively correlated with OM content, and DHA, OM, and CaCO3 were correlated with each other in their spatial distribution, indicating that abundant OM content contributed to the formation of CaCO3. Therefore, the formation of pedogenic CaCO3 was a biotic process in the plant community dominated by A. ordosica.
基金grateful to Danida Fellowship Centre for supporting the research project (Biobased electricity in developing countries,DFC No.11-091 Ris?)The financial support from China Scholarship Council (CSC No.2011635051) for Guotao Sun is gratefully acknowledged.Annette E.Jensen,DTU is thanked for technical support
文摘Microbial fuel cells (MFCs) rely on microbial conversion of organic substrates to electricity. The optimal perfor- mance depends on the establishment of a microbial community rich in electrogenic bacteria. Usually this micro- bial community is established from inoculation of the MFC anode chamber with naturally occurring mixed inocula. In this study, the electrochemical performance of MFCs and microbial community evolution were eval- uated for three inocula including domestic wastewater (DW), lake sediment (LS) and biogas sludge (BS) with varying substrate loading (Lsub) and external resistance (Rext) on the MFC. The electrogenic bacterium Geobacter sulfurreducens was identified in all inocula and its abundance during MFC operation was positively linked to the MFC performance. The IS inoculated MFCs showed highest abundance (18% ± 1%) of G. sulfurreducens, maximum current density [Imax = (690 ± 30) mA.m 2] and coulombic efficiency (CE = 29% ±1%) with acetate as the substrate./max and CE increased to (1780 ± 30) mA.m-2 and 58%± 1%, respectively, after decreasing the Rext from 1000 Ωto 200 Ω, which also correlated to a higher abundance ofG. sulfurreducens (21% ±0.7%) on the MFC anodic biofilm. The data obtained contribute to understanding the microbial community response to Lsub and Roy, for of timizing electricity eneration in MFCs.
基金Supported by the "948" Grant of the National Forestry Administration of China (No.2007-4-19)the Special Grantof Chinese Forestry Public Benefits (Nos.200804030 and 2007-4-15)the Provincial Fund for Distinguished Young Scholars of Hunan, China (No.07JJ1004)
文摘Soils play a critical role in the global carbon cycle, and can be major source or sink of CO2 depending upon land use, vegetation type and soil management practices. Fine roots are important component of a forest ecosystem in terms of water and nutrient uptake. In this study the effects of thinning and litter fall removal on fine root production and soil organic carbon content were examined in 20-year-old Masson pine (Pinus resinosa) plantations in Huitong, Hunan Province of China in the growing seasons of 2004 and 2005. The results showed that fine root production was significantly lower in the thinning plots than in the control plots, with a decrease of 58% and 14% in 2004 and 2005 growing seasons, respectively. Litter fall removal significantly increased fine root production by 14% in 2004. Soil temperature (Tsoil) and soil moisture (Msoil) were higher in the thinning plots than those in the controls. Litter fall removal had significant effects on Tsoil and Msoil. Soil organic carbon content was higher in the thinning plots but was lower in the plots with litter fall removal compared with that in the controls. Our results also indicated that annual production of fine roots resulted in small carbon accumulation in the upper layers of the soil, and removal of tree by thinning resulted in a significant increase of carbon storage in Masson pine plantations.
基金Project supported by the National Natural Science Foundation of China (No.39970140)the Department of Science andTechnology of Guangdong Province, Chinathe Open Foundation of Heshan Hilly Land Interdisciplinary Experimental Station of the Chinese Academy of Sciences (CAS), and the 100 Talents Program of CAS.
文摘This study was conducted to examine the responses of earthworms to soil organic matter and litter at different decomposition stages and their contributions in litter decomposition processes in southern subtropical areas of China. Two plantations were selected as the study sites: Site I was dominated by the exotic endogeic earthworm species Ocnerodrilus occidentalis; Site II was dominated by epigeic species Amynthas corticis. After the fallen litter and earthworms were removed or expelled, four treatments were set up as: reserving the top soil (0–5 cm, equal to H layer) (H), removing the top soil and adding fresh litter (Le), removing the top soil and adding semi-decomposed litter (Li), and a control with no top soil nor any litter (CK). Five randomized blocks that were enclosed with nylon nets on the top were set up in each site, and then the four treatments were arranged randomly in each block. After 2–3 months, earthworms were collected using the formalin method. The results showed that Ocnerodrilus occidentalis preferred Treatment H though it was found in Treatments Le and Li as well; Amynthas corticis preferred Treatment Li though sometimes it also appeared in Treatment H; and Amynthas sp., another epigeic species, was mainly present under Treatment Le and only appeared in Treatment H occasionally. These findings confirmed that earthworm species belonging to different ecological groups had different responses to organic matter at different decomposition stages. The impacts of earthworm communities dominated by O. occidentalis mainly appeared at the later periods of litter decomposition.
基金National Natural Science Foundation of China(31570452,31670524).
文摘Rapid spread and growth of plants that are poisonous to animals produce large amounts of plant litter in degraded grasslands.Nitrogen(N)input may promote the growth of these poisonous plants and alter the rhizosphere microbes and arbuscular mycorrhizal fungi(AMF)in particular.However,it is unclear how poisonous plant litter affects the growth of palatable plants and their associated AMF in the rhizosphere and whether and how N deposition may mediate these effects.A greenhouse experiment was performed to test the combined effects of litter addition of a poisonous plant,Stellera chamaejasme,and N addition on the growth of a dominant grass,Leymus chinensis,AMF characteristics and soil properties.Litter addition significantly increased the ramet number and aboveground biomass of L.chinensis and soil available phosphorus(AP)concentration and decreased the spore density of AMF.However,the interaction of both treatments had no significant effects on traits of L.chinensis and AMF properties.Stellera chamaejasme liter positively affected L.chinensis by increasing AP and negatively affected AMF by combining balanced changes in soil nutrients and litter-induced allelopathic compositions.High N addition may alleviate soil N limitation and inhibit litter decomposition,thus overriding the litter's effects on L.chinensis and AMF.These findings imply that it is necessary to objectively and comprehensively evaluate the ecological functions of poisonous plants beyond their harmful effects on livestock.Simultaneously,N deposition should be an indispensable factor in predicting the relationships between poisonous plants and edible plants indegraded grasslands.
基金supported by the National Natural Science Foundation of China (30700639,31170581)
文摘This study investigated the influence of broadleaf and conifer vegetation on soil microbial communities in a distinct vertical distribution belt in Northeast China.Soil samples were taken at 0-5,5-10 and 10-20 cm depths from four vegetation types at different altitudes,which were characterized by poplar(Populus davidiana)(1250-1300 m),poplar(P.davidiana) mixed with birch(Betula platyphylla)(1370-1550 m),birch(B.platyphylla)(1550-1720 m),and larch(Larix principis-rupprechtii)(1840-1890 m).Microbial biomass and community structure were determined using the fumigation-extraction method and phospholipid fatty acid(PLFA) analysis,and soil fungal community level physiological profiles(CLPP) were characterized using Biolog FF Microplates.It was found that soil properties,especially soil organic carbon and water content,contributed significantly to the variations in soil microbes.With increasing soil depth,the soil microbial biomass,fungal biomass,and fungal catabolic ability diminished;however,the ratio of fungi to bacteria increased.The fungal ratio was higher under larch forests compared to that under poplar,birch,and their mixed forests,although the soil microbial biomass was lower.The direct contribution of vegetation types to the soil microbial community variation was 12%.If the indirect contribution through soil organic carbon was included,variations in the vegetation type had substantial influences on soil microbial composition and diversity.
基金The University Grants Commission, New Delhi, India, provided financial support in the form of a University CRET and CAS Fellowship to Mr. Chandra Mohan Kumar (No.Bot/2012-2013/CAS-JRF/262)
文摘Restoration of forests poses a major challenge globally, particularly in the tropics, as the forests in these regions are more vulnerable to land-use change. We studied land-use change from natural forest(NF) to degraded forest(DF), and subsequently to either Jatropha curcas plantation(JP) or agroecosystem(AG), in the dry tropics of Uttar Pradesh, India, with respect to its impacts on soil microbial community composition as indicated by phospholipid fatty acid(PLFA) biomarkers and soil organic carbon(SOC) content. The trend of bacterial PLFAs across all land-use types was in the order: NF > JP > DF> AG. In NF, there was dominance of gram-negative bacterial(G^-) PLFAs over the corresponding gram-positive bacterial(G^+) PLFAs. The levels of G^- PLFAs in AG and JP differed significantly from those in DF, whereas those of G^+ PLFAs were relatively similar in these three land-use types. Fungal PLFAs,however, followed a different trend: NF > JP > DF = AG. Total PLFAs, fungal/bacterial(F/B) PLFA ratio, and SOC content followed trends similar to that of bacterial PLFAs. Across all land-use types, there were strong positive relationships between SOC content and G-, bacterial, fungal, and total microbial PLFAs and F/B PLFA ratio. Compared with bacterial PLFAs, fungal PLFAs appeared to be more responsive to land-use change. The F/B PLFA ratio, fungal PLFAs, and bacterial PLFAs explained 91%, 94%,and 73% of the variability in SOC content, respectively. The higher F/B PLFA ratio in JP favored more soil C storage, leading to faster ecosystem recovery compared to either AG or DF. The F/B PLFA ratio could be used as an early indicator of ecosystem recovery in response to disturbance, particularly in relation to land-use change.
基金supported by the Open Project from the Ecological Security and Protection Key Laboratory of Sichuan Province(ESP1904,ESP2102)the Doctoral Scientific Research Foundation of China West Normal University(18Q047)the Scientific Research Innovation Team Project of China West Normal University(CXTD2020-4).
文摘Plant-derived carbon(C)inputs via foliar litter,root litter and root exudates are key drivers of soil organic C stocks.However,the responses of these three input pathways to climate warming have rarely been studied in alpine shrublands.By employing a 3-year warming experiment(increased by 1.3℃),we investigated the effects of warming on the relative C contributions from foliar litter,root litter and root exudates from Sibiraea angustata,a dominant shrub species in an alpine shrubland on the eastern Qinghai-Tibetan Plateau.The soil organic C inputs from foliar litter,root litter and root exudates were 77.45,90.58 and 26.94 g C m^(-2),respectively.Warming only slightly increased the soil organic C inputs from foliar litter and root litter by 8.04 and 11.13 g C m^(-2),but significantly increased the root exudate C input by 15.40 g C m^(-2).Warming significantly increased the relative C contributions of root exudates to total C inputs by 4.6%but slightly decreased those of foliar litter and root litter by 2.5%and 2.1%,respectively.Our results highlight that climate warming may stimulate plant-derived C inputs into soils mainly through root exudates rather than litter in alpine shrublands on the Qinghai-Tibetan Plateau.