To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load ...To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load are proposed. The optimization method of excited capacitors to minimize the reactive power of the control winding at a variable speed is given. The calculation capacity of the machine with a diode bridge rectifier load is proposed. To achieve global searching, the integrated method with the improved real-coded genetic algorithm and the twodimensional finite element method (FEM) is introduced. Design results of the sample show that reactive power can be reduced by the method, and the converter capacity can be decreased to 1/3 of output rated power at the speed ratio of 1 : 3, thus reducing the volume and the mass of the inverter.展开更多
The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on ...The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on software DEFORM 3D and experimentally validated. The results show that by increasing the flow passage length, the velocity of metal at the cross-section of sheath tends toward uniformity, the values of the bending angles of sheath gradually approach the ideal value of zero and the cross-section exhibits a better shape. The extrusion wheel velocity has negligible effects on the bending shape and cross-section of the sheath product when a long flow passage is used.展开更多
An integrated system FSOP2D,including modules for the shape optimal modeling,structural analysis,sensitivity analysis,optimal method library and post- processing,is developed.By selecting fictitious loads as the desig...An integrated system FSOP2D,including modules for the shape optimal modeling,structural analysis,sensitivity analysis,optimal method library and post- processing,is developed.By selecting fictitious loads as the design variables that has a linear relationship with the grid point locations and using design sensitivity analysis of the domain method,it is easier to solve the velocity field.In the course of optimal iterations,mesh distortion is kept to a minimum,sensitivity derivatives of object function,stress constraints and displacement constraints are derived.Computation of sensitivity analysis is achieved in the system.Two engineering examples are used to prove the system's effectiveness,the optimal results can successfully be obtained by lesser number of iterations.展开更多
The impedance of a solid state active phased array antenna varing with frequency and beam scanning scanning angle be matched with the solid state active matching network (SSAMN). In order to adjust and measure the rad...The impedance of a solid state active phased array antenna varing with frequency and beam scanning scanning angle be matched with the solid state active matching network (SSAMN). In order to adjust and measure the radar conveniently and Securely, it is necessary for the impedance of the simulator of the phased array antennas to be optimized.Having selected the PIN dilde controlling circuits and the circuit parameters optimized,the simulator circuit is determined through numerical computation The experiment is given in support of the simulation.展开更多
Flat metal strips are deformed progressively into profiles with certain geometry sections by a series of successive rotating rolls at the room temperature, and it is called the cold roll-forming. An effective method i...Flat metal strips are deformed progressively into profiles with certain geometry sections by a series of successive rotating rolls at the room temperature, and it is called the cold roll-forming. An effective method is given for roll design to avoid major defects via finite element method (FEM) simulation using a booting model. The simulation gives reasonable fit to the actual product in the two major roll-forming defects, i.e. , edge wave and springback. The redesigned rolls using the approach of multi-stand FEM simulation can effectively control these two defects.展开更多
This paper discusses some aspects of finite element computation,such as the automatic generation of finite element ,refinement of mesh,process of node density, distribution of load,optimum design and the drawing o...This paper discusses some aspects of finite element computation,such as the automatic generation of finite element ,refinement of mesh,process of node density, distribution of load,optimum design and the drawing of stress contour, and describes the developing process of software for a planar 8 node element.展开更多
The design of optimal separation flow sheets for multi-component mixtures is still not a solved problem This is especially the case when non-ideal or azeotropic mixtures or hybrid separation processes are considered. ...The design of optimal separation flow sheets for multi-component mixtures is still not a solved problem This is especially the case when non-ideal or azeotropic mixtures or hybrid separation processes are considered. We review recent developments in this field and present a systematic framework for the design of separation flow sheets. This framework proposes a three-step approach. In the first step different flow sheets are generated. In the second step these alternative flow sheet structures are evaluated with shortcut methods. In the third step a rigorous mixed-integer nonlinear programming (MINLP) optimization of the entire flow sheet is executed to determine the best alternative. Since a number of alternative flow sheets have already been eliminated, only a few optimization runs are necessary in this final step. The whole framework thus allows the systematic generation and evaluation of separation processes and is illustrated with the case study of the separation of ethanol and water.展开更多
A case study of seismic response of an earth embankment foundation on liquefiable soils in Kansai area,western Japan was presented. Based on a calibrated cyclic elasto-plastic constitutive model for liquefiable sand a...A case study of seismic response of an earth embankment foundation on liquefiable soils in Kansai area,western Japan was presented. Based on a calibrated cyclic elasto-plastic constitutive model for liquefiable sand and Biot dynamic coupled theory,the seismic analysis was carried out by using a dynamic effective stress finite element method under plane strain condition. A recent design study was illustrated in detail for a river earth embankment subjected to seismic excitation on the saturated deposits with liquefiable sands. Simulated results of the embankment foundation during liquefaction were obtained for acceleration,displacement,and excess pore water pressures,which were considered to yield useful results for earthquake geotechnical design. The results show that the foundation soil reaches a fully liquefied state with high excess pore pressure ratios approaching to 1.0 due to the earthquake shaking. At the end of the earthquake,the extensive liquefaction causes about 1.0 m lateral spreading at the toe and 60 cm settlement at the crest of the earth embankment.展开更多
The hydro-hammer sampler is a new type of sampler compared with traditional ones. An important part of this new offshore sampler is that the structure of the core cutter has a significant effect on penetration and cor...The hydro-hammer sampler is a new type of sampler compared with traditional ones. An important part of this new offshore sampler is that the structure of the core cutter has a significant effect on penetration and core recovery. In our experiments, a commercial finite element code with a capability of simulating large-strain frictional contact between two or more solid bodies is used to simulate the core cutter-soil interaction. The effects of the cutting edge shape, the diameter and the edge angle on penetration are analyzed by non-liner transient dynamic analysis using a finite element method (FEM). Simulation results show that the cutter shape clearly has an effect on the penetration and core recovery. In addition, the penetration of the sampler increases with an increase in the inside diameter of the cutter, but decreases with an increase in the cutting angle. Based on these analyses, an optimum structure of the core cutter is designed and tested in the north margin of the Dalian gulf. Experiment results show that the penetration rate is about 16.5 m/h in silty clay and 15.4 m/h in cohesive clay, while the recovery is 68% and 83.3% resoectively.展开更多
The resistance arrangements of the flexes connecting with the cathode bus bar in aluminum reduction cells were generalized as three modes. In each mode the universal method to select proper resistivity of the flexes w...The resistance arrangements of the flexes connecting with the cathode bus bar in aluminum reduction cells were generalized as three modes. In each mode the universal method to select proper resistivity of the flexes was induced respectively to insure that the current in local group of flexes was equal. Furthermore, a 350 kA aluminum reduction cell based electric field model was developed by finite element method to evaluate the effect of the method. Suggestions on selection of three modes were also put forward. The results show that the methods of resistance optimization can reduce the current variation about 180 A compared with that in original case.展开更多
Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of str...Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of structures and compositions.Therefore,in this review,we first summarized the design factors of photocatalytic materials based on MOF from the perspective of"star"MOF.The modification strategies of MOFs-based photocatalysts were discussed to improve its photocatalytic activity and specific applications were summarized as well,including photocatalytic CO_(2)reduction,photocatalytic water splitting and photo-degradation of pollutants.Finally,the advantages and disadvantages of MOFs-based photocatalysts were discussed,the current challenges were highlighted,and suggestions for future research directions were proposed.展开更多
With the quick development of the reform of College English teaching, web based College English teaching is used and generalized in every institution of higher education. However, more attention should be paid to the ...With the quick development of the reform of College English teaching, web based College English teaching is used and generalized in every institution of higher education. However, more attention should be paid to the teaching quality to develop this web based College English teaching model. Therefore, the construction of the quality guarantee system is of major significance to promote the effective design of web based College English course system and improve the quality of web based College English teaching.展开更多
Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on com...Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on comparison between the theories. In this work, comparison between the theories with finite element analysis is done using the PLAXIS software. The comparative results show that in terms of distribution and magnitude of active earth pressure, RANKINE's theory possesses the highest match to the PLAXIS analysis. Parametric studies were also done to study the responses of active earth pressure distribution to varying parameters Increasing soil friction angle and wall friction causes decrease in active earth pressure. In contrast, active earth pressure increases with increasing soil unit weight and height of wall. RANK/NE's theory has the highest compatibility to finite element analysis among all theories, and utilization of this theory leads to proficient retaining wall design.展开更多
For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven thre...For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.展开更多
A microelectromechanical Digital to Analog Converter (DAC) based on Weighted Gap (WG) principle is described,which is analogous to the weighed resistor DAC in electronic circuits.To convert the input of binary vol...A microelectromechanical Digital to Analog Converter (DAC) based on Weighted Gap (WG) principle is described,which is analogous to the weighed resistor DAC in electronic circuits.To convert the input of binary voltage to the output of analog displacement,the gaps are proposed to be employed as a scale factor.A finite element method is used to simulate the performance of the DAC.To reduce the error,the structure design is optimized and the maximum error of 0 002μm is obtained.展开更多
It is noted that any variation in operating conditions has a considerable effect on the tire/road interaction. Furthermore,choosing a range of proper values for carcass stiffness is very essential for both tire safety...It is noted that any variation in operating conditions has a considerable effect on the tire/road interaction. Furthermore,choosing a range of proper values for carcass stiffness is very essential for both tire safety and effective driving action. In this work,an elaborated 3D model fully compliant with the geometrical size of radial tire 185/60 R15 is worked up, for evaluating the effects of components properties and working conditions on deformation and stress/strain fields created inside the tire. For the simulation, the tire structure is assumed to be composed of tread, carcass ply, and bead. The mechanical behavior of rubber as main component of tire is described by Mooney-Rivlin material model. The comparison of the obtained results and laboratory tests demonstrates the validity and high accuracy of analysis.展开更多
Many minerals in nature have self-purification capacity to hold and stabilize deleterious contaminants into their lattice structures,which can be used for treatment of heavy metals-bearing contaminants. Hydrotalcite L...Many minerals in nature have self-purification capacity to hold and stabilize deleterious contaminants into their lattice structures,which can be used for treatment of heavy metals-bearing contaminants. Hydrotalcite Layer Double Hydroxide (LDH),tobermorite Calcium Silicate Hydrate (CSH) and apatite are ubiquitous minerals in nature,having higher geochemical stability and potential for binding and stabilizing heavy metals. Based on the elucidation of crystal structure property and self-purification principles of the three minerals above,this article discussed how to design the self-purification system of heavy metal-bearing contaminants.展开更多
文摘To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load are proposed. The optimization method of excited capacitors to minimize the reactive power of the control winding at a variable speed is given. The calculation capacity of the machine with a diode bridge rectifier load is proposed. To achieve global searching, the integrated method with the improved real-coded genetic algorithm and the twodimensional finite element method (FEM) is introduced. Design results of the sample show that reactive power can be reduced by the method, and the converter capacity can be decreased to 1/3 of output rated power at the speed ratio of 1 : 3, thus reducing the volume and the mass of the inverter.
基金Project (51175055) supported by the National Natural Science Foundation of ChinaProject (201102020) supported by the Natural Science Foundation of Liaoning Province, ChinaProject (200921085) supported by the Liaoning BaiQian Wan Talents Program, China
文摘The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on software DEFORM 3D and experimentally validated. The results show that by increasing the flow passage length, the velocity of metal at the cross-section of sheath tends toward uniformity, the values of the bending angles of sheath gradually approach the ideal value of zero and the cross-section exhibits a better shape. The extrusion wheel velocity has negligible effects on the bending shape and cross-section of the sheath product when a long flow passage is used.
文摘An integrated system FSOP2D,including modules for the shape optimal modeling,structural analysis,sensitivity analysis,optimal method library and post- processing,is developed.By selecting fictitious loads as the design variables that has a linear relationship with the grid point locations and using design sensitivity analysis of the domain method,it is easier to solve the velocity field.In the course of optimal iterations,mesh distortion is kept to a minimum,sensitivity derivatives of object function,stress constraints and displacement constraints are derived.Computation of sensitivity analysis is achieved in the system.Two engineering examples are used to prove the system's effectiveness,the optimal results can successfully be obtained by lesser number of iterations.
文摘The impedance of a solid state active phased array antenna varing with frequency and beam scanning scanning angle be matched with the solid state active matching network (SSAMN). In order to adjust and measure the radar conveniently and Securely, it is necessary for the impedance of the simulator of the phased array antennas to be optimized.Having selected the PIN dilde controlling circuits and the circuit parameters optimized,the simulator circuit is determined through numerical computation The experiment is given in support of the simulation.
文摘Flat metal strips are deformed progressively into profiles with certain geometry sections by a series of successive rotating rolls at the room temperature, and it is called the cold roll-forming. An effective method is given for roll design to avoid major defects via finite element method (FEM) simulation using a booting model. The simulation gives reasonable fit to the actual product in the two major roll-forming defects, i.e. , edge wave and springback. The redesigned rolls using the approach of multi-stand FEM simulation can effectively control these two defects.
文摘This paper discusses some aspects of finite element computation,such as the automatic generation of finite element ,refinement of mesh,process of node density, distribution of load,optimum design and the drawing of stress contour, and describes the developing process of software for a planar 8 node element.
基金the Deutsche Forschungsgemeinschaft (German Research Foundation),DAAD (German Academic Exchange Service) and FUNDAYACUCHO, and Bayer Technology Services
文摘The design of optimal separation flow sheets for multi-component mixtures is still not a solved problem This is especially the case when non-ideal or azeotropic mixtures or hybrid separation processes are considered. We review recent developments in this field and present a systematic framework for the design of separation flow sheets. This framework proposes a three-step approach. In the first step different flow sheets are generated. In the second step these alternative flow sheet structures are evaluated with shortcut methods. In the third step a rigorous mixed-integer nonlinear programming (MINLP) optimization of the entire flow sheet is executed to determine the best alternative. Since a number of alternative flow sheets have already been eliminated, only a few optimization runs are necessary in this final step. The whole framework thus allows the systematic generation and evaluation of separation processes and is illustrated with the case study of the separation of ethanol and water.
基金Projects (40802070, 40841014) supported by the National Natural Science Foundation of ChinaProject (B308) supported by Shanghai Leading Academic Discipline Project, China
文摘A case study of seismic response of an earth embankment foundation on liquefiable soils in Kansai area,western Japan was presented. Based on a calibrated cyclic elasto-plastic constitutive model for liquefiable sand and Biot dynamic coupled theory,the seismic analysis was carried out by using a dynamic effective stress finite element method under plane strain condition. A recent design study was illustrated in detail for a river earth embankment subjected to seismic excitation on the saturated deposits with liquefiable sands. Simulated results of the embankment foundation during liquefaction were obtained for acceleration,displacement,and excess pore water pressures,which were considered to yield useful results for earthquake geotechnical design. The results show that the foundation soil reaches a fully liquefied state with high excess pore pressure ratios approaching to 1.0 due to the earthquake shaking. At the end of the earthquake,the extensive liquefaction causes about 1.0 m lateral spreading at the toe and 60 cm settlement at the crest of the earth embankment.
基金Project 20002070005126 supported by the China Geological Survey
文摘The hydro-hammer sampler is a new type of sampler compared with traditional ones. An important part of this new offshore sampler is that the structure of the core cutter has a significant effect on penetration and core recovery. In our experiments, a commercial finite element code with a capability of simulating large-strain frictional contact between two or more solid bodies is used to simulate the core cutter-soil interaction. The effects of the cutting edge shape, the diameter and the edge angle on penetration are analyzed by non-liner transient dynamic analysis using a finite element method (FEM). Simulation results show that the cutter shape clearly has an effect on the penetration and core recovery. In addition, the penetration of the sampler increases with an increase in the inside diameter of the cutter, but decreases with an increase in the cutting angle. Based on these analyses, an optimum structure of the core cutter is designed and tested in the north margin of the Dalian gulf. Experiment results show that the penetration rate is about 16.5 m/h in silty clay and 15.4 m/h in cohesive clay, while the recovery is 68% and 83.3% resoectively.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘The resistance arrangements of the flexes connecting with the cathode bus bar in aluminum reduction cells were generalized as three modes. In each mode the universal method to select proper resistivity of the flexes was induced respectively to insure that the current in local group of flexes was equal. Furthermore, a 350 kA aluminum reduction cell based electric field model was developed by finite element method to evaluate the effect of the method. Suggestions on selection of three modes were also put forward. The results show that the methods of resistance optimization can reduce the current variation about 180 A compared with that in original case.
文摘Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of structures and compositions.Therefore,in this review,we first summarized the design factors of photocatalytic materials based on MOF from the perspective of"star"MOF.The modification strategies of MOFs-based photocatalysts were discussed to improve its photocatalytic activity and specific applications were summarized as well,including photocatalytic CO_(2)reduction,photocatalytic water splitting and photo-degradation of pollutants.Finally,the advantages and disadvantages of MOFs-based photocatalysts were discussed,the current challenges were highlighted,and suggestions for future research directions were proposed.
文摘With the quick development of the reform of College English teaching, web based College English teaching is used and generalized in every institution of higher education. However, more attention should be paid to the teaching quality to develop this web based College English teaching model. Therefore, the construction of the quality guarantee system is of major significance to promote the effective design of web based College English course system and improve the quality of web based College English teaching.
基金Project(RG086/10AET) supported by the Institute of Research Management and Monitoring,University of Malaya,Malaysia
文摘Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on comparison between the theories. In this work, comparison between the theories with finite element analysis is done using the PLAXIS software. The comparative results show that in terms of distribution and magnitude of active earth pressure, RANKINE's theory possesses the highest match to the PLAXIS analysis. Parametric studies were also done to study the responses of active earth pressure distribution to varying parameters Increasing soil friction angle and wall friction causes decrease in active earth pressure. In contrast, active earth pressure increases with increasing soil unit weight and height of wall. RANK/NE's theory has the highest compatibility to finite element analysis among all theories, and utilization of this theory leads to proficient retaining wall design.
基金The National Natural Science Foundation of China(No.41572276)the National Key Research and Development Program of China(No.2017YFC0805400).
文摘For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.
文摘A microelectromechanical Digital to Analog Converter (DAC) based on Weighted Gap (WG) principle is described,which is analogous to the weighed resistor DAC in electronic circuits.To convert the input of binary voltage to the output of analog displacement,the gaps are proposed to be employed as a scale factor.A finite element method is used to simulate the performance of the DAC.To reduce the error,the structure design is optimized and the maximum error of 0 002μm is obtained.
文摘It is noted that any variation in operating conditions has a considerable effect on the tire/road interaction. Furthermore,choosing a range of proper values for carcass stiffness is very essential for both tire safety and effective driving action. In this work,an elaborated 3D model fully compliant with the geometrical size of radial tire 185/60 R15 is worked up, for evaluating the effects of components properties and working conditions on deformation and stress/strain fields created inside the tire. For the simulation, the tire structure is assumed to be composed of tread, carcass ply, and bead. The mechanical behavior of rubber as main component of tire is described by Mooney-Rivlin material model. The comparison of the obtained results and laboratory tests demonstrates the validity and high accuracy of analysis.
文摘Many minerals in nature have self-purification capacity to hold and stabilize deleterious contaminants into their lattice structures,which can be used for treatment of heavy metals-bearing contaminants. Hydrotalcite Layer Double Hydroxide (LDH),tobermorite Calcium Silicate Hydrate (CSH) and apatite are ubiquitous minerals in nature,having higher geochemical stability and potential for binding and stabilizing heavy metals. Based on the elucidation of crystal structure property and self-purification principles of the three minerals above,this article discussed how to design the self-purification system of heavy metal-bearing contaminants.