To investigate the workpiece curvature influence on groove deformation,numerical studies with curvature varying from negative to positive were conducted on copper material.Groove deformations were analyzed,including g...To investigate the workpiece curvature influence on groove deformation,numerical studies with curvature varying from negative to positive were conducted on copper material.Groove deformations were analyzed,including groove geometry,effective stress distribution and plough force.The curled groove shape whose workpiece curvature was 0.133 mm-1 was validated by experiments.Moreover,a series of geometry models with various curvatures were introduced to analyze the change of groove deformation.The results show that positive curvatures influence groove deformation more intensively than negative or zero curvature.It is mainly due to the action of the tool forming face during plough process.展开更多
Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using...Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using the finite difference method for numerical simulation. The boundary conditions and the initial values are determined by in situ observations and numerical iterations.The simulation results indicate that the ultimate calculated steady heat transfer time is 68 years, and most of the heat transfer is completed in 20 years.The initial constant temperature soil surrounding the tunnels is transformed to an annually variable one.An obvious temperature-varying region of the surrounding soil is discovered within 5 m from the tunnel exterior, as well as within the entire range of soil between the two tunnels.The maximum temperature increase value reaches 7.14 ℃ and the maximum peak-to-valley value of annual temperature increase reaches 10 ℃.The temperature variation of soils surrounding tunnels below 10 m is completely controlled by the heat transfer from the tunnels.The coupled heat transfer effect is confirmed because the ultimate steady temperature of soil between the two tunnels is higher than the ones along other positions.Moreover, the regression model comprising a series of univariate functions is proposed for the annual soil temperature fluctuation estimation for the locations varied distances around the tunnel.This investigation is beneficial to gain an insight into the long-term variation tendencies of local engineering geological conditions of the river beach above shallow sections of the cross-river road tunnels.展开更多
In this paper, a 3D finite element (FE) program ADINA was applied to analyzing a tunnel with 9 segment tings. The loads acting on these segment tings included the squeezing action of tail brush of shield machine und...In this paper, a 3D finite element (FE) program ADINA was applied to analyzing a tunnel with 9 segment tings. The loads acting on these segment tings included the squeezing action of tail brush of shield machine under attitude deflection, the jacking forces, the grouting pressure and the soil pressure. The analyses focused on the rebar stress in two statuses: (1) normal construction status without shield machine squeezing; (2) squeezing action induced by shield machine under attitude deflection. The analyses indicated that the rebar stress was evidently affected by the construction loads. In different construction status, the rebar stress ranges from -80 MPa to 50 MPa, and the rebar is in elastic status. Even some cracks appear on segments, the stress of segment rebar is still at a low level. It is helpful to incorporate a certain quantity of steel fiber to improve the anti-crack and shock resistance performance.展开更多
For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven thre...For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.展开更多
Three-dimensional(3D) geometric models with different comer angles (90° and 120°) and with or without inner round fillets in the bottom die were designed. Some important process parameters were regarded ...Three-dimensional(3D) geometric models with different comer angles (90° and 120°) and with or without inner round fillets in the bottom die were designed. Some important process parameters were regarded as the calculation conditions used in DEFORMTM-3D software, such as stress--strain data of compression test for AZ31 magnesium, temperatures of die and billet, and friction coefficient. Influence of friction coefficient on deformation process was discussed. The results show that reasonable lubrication condition is important to plastic deformation. The change characteristics for distributions of effective stress and strain during an equal channel angular extrusion (ECAE) process with inner angle of 90° and without fillets at outer comer were described. Inhomogeneity index (C) was defined and deformation heterogeneity of ECAE was analyzed from the simulation and experiment results. The deformation homogeneity caused by fillets at outer comer increased compared with the die without fillets. The cumulated maximum strains decrease with increasing the fillets of outer comer in ECAE die and the inner comer angle. The analysis results show that better structures of ECAE die including appropriate outer comer fillet and the inner comer angle of 90° for the die can improve the strain and ensure plastic deformation homogenization to a certain extent. The required extrusion force drops with increasing the fillet made at outer comer in ECAE die. It is demonstrated that the prediction results are in good agreement with experiments and the theoretical calculation and the research conclusions in literatures.展开更多
The dynamic response of moored crane-ship is studied. Governing equations for the dynamic response of a crane-ship coupled with the pendulum motion of the payload are derived based on Lagrange’s equations. The boom i...The dynamic response of moored crane-ship is studied. Governing equations for the dynamic response of a crane-ship coupled with the pendulum motion of the payload are derived based on Lagrange’s equations. The boom is modeled based on finite element method, while the payload is modeled as a planar pendulum of point mass. The dynamic response was studied using numerical method. The calculation results show that the large-amplitude responses occur at wave periods near the natural period of the payload. Load swing angle is smaller for crane-ship with flexible boom, in comparison with rigid boom. The ship surge mo- tions have large vibrations for crane-ship with flexible boom, which were not observed for a rigid boom. The analysis identifies the significance of key parameters and reveals how the system design can be adjusted to avoid critical conditions.展开更多
When the tunnel underpasses through the building,it will cause deformation and even damage to the buildings above,and the deformation of building foundation is the key to building safety.Based on the engineering case,...When the tunnel underpasses through the building,it will cause deformation and even damage to the buildings above,and the deformation of building foundation is the key to building safety.Based on the engineering case,the theoretical analysis was employed to evaluate the influence of shield tunnel underpass construction on the stability of the building,and the optimal tunneling parameters in the field construction have been obtained through the verified theoretical model and parameter analysis.First,the strip foundation of the building was simplified to the Timoshenko beam,which was taken into account the shear effect,and then the deformation displacement of the soil at the same place of strip foundation was applied to the simplified Timoshenko beam.Finally,the numerical solution of the displacement of the strip foundation was obtained by using the finite element method and verified its reliability using Euler-Bernoulli beam theoretical model,field monitoring data,and numerical simulation.Parameters analysis for the deformation and internal force of strip foundation under different types of shield machine tunneling parameters showed that the influence of the pressure of shield excavation chamber,thrust of shield,and driving speed played an important role in the deformation of the building’s strip foundation and internal force.展开更多
An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state...An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state functions(LSFs)were established with the structural reliability theory.A power-law function was applied to model the growth of corrosion defects,and the effect of external environmental factors on the growth of the pipeline s defect was considered.Moreover,the result was compared with the commonly used linear growth model.After that,a finite element simulation model was established to calculate the burst pressure of the pipeline with corrosion defects,and its accuracy was verified through hydraulic burst test and by comparison with international criteria.On that basis,the probability that the pipeline may fail was calculated with Monte Carlo simulation(MCS)and by considering the LSFs,and the pipeline s RUL was obtained accordingly.Furthermore,sensitivity analysis was conducted to determine the sensitivity parameters for the corrosion and RUL of the pipeline.The results indicate that the radial corrosion rate,wall thickness and working pressure have a great influence on the failure probability of the pipeline.Thus,corresponding measures should be adopted during the operation process of the pipeline to reduce the corrosion rate and increase the wall thickness,so as to prolong the pipeline s RUL.展开更多
In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was develope...In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was developed.Two typical fouling particles,the hard particles(sand)and soft ones(coal fines),are considered.A support stiffness test of the ballast bed under various fouling conditions was conducted to calibrate the microscopic parameters of the contact model.With the model,the influence of fouling particles on the mechanical behavior and deformation of the ballast bed was analyzed from macro and micro perspectives.The results show that the increase in the strength of the fouling particles enlarges the stiffness of the ballast bed.Hard particles increase the uniformity coefficient of the contact force bondγof ballast by 50.4%.Fouling particles increase the average stress in the subgrade,soft particles by 2 kPa and hard particles by 1 kPa.Hard particles can reduce the elasticity,plastic deformation and energy dissipation in the track structure.As the fouling particle changes from hard to soft,the proportion of the settlement in ballast bed increases to 40.5%and surface layer of swbgrade settlement decreases to 59.5%.Thus,the influence of fouling particles should be considered carefully in railway design and maintenance.展开更多
AIM To simplify the diagnostic criteria for superficial esophageal squamous cell carcinoma(SESCC) on Narrow Band Imaging combined with magnifying endoscopy(NBI-ME).METHODS This study was based on the post-hoc analysis...AIM To simplify the diagnostic criteria for superficial esophageal squamous cell carcinoma(SESCC) on Narrow Band Imaging combined with magnifying endoscopy(NBI-ME).METHODS This study was based on the post-hoc analysis of a randomized controlled trial. We performed NBI-ME for 147 patients with present or a history of squamous cell carcinoma in the head and neck, or esophagus between January 2009 and June 2011. Two expert endoscopistsdetected 89 lesions that were suspicious for SESCC lesions, which had been prospectively evaluated for the following 6 NBI-ME findings in real time: "intervascular background coloration"; "proliferation of intrapapillary capillary loops(IPCL)"; and "dilation", "tortuosity", "change in caliber", and "various shapes(VS)" of IPCLs(i.e., Inoue's tetrad criteria). The histologic examination of specimens was defined as the gold standard for diagnosis. A stepwise logistic regression analysis was used to identify candidates for the simplified criteria from among the 6 NBI-ME findings for diagnosing SESCCs. We evaluated diagnostic performance of the simplified criteria compared with that of Inoue's criteria.RESULTS Fifty-four lesions(65%) were histologically diagnosed as SESCCs and the others as low-grade intraepithelial neoplasia or inflammation. In the univariate analysis, proliferation, tortuosity, change in caliber, and VS were significantly associated with SESCC(P < 0.01). The combination of VS and proliferation was statistically extracted from the 6 NBI-ME findings by using the stepwise logistic regression model. We defined the combination of VS and proliferation as simplified dyad criteria for SESCC. The areas under the curve of the simplified dyad criteria and Inoue's tetrad criteria were 0.70 and 0.73, respectively. No significant difference was shown between them. The sensitivity, specificity, and accuracy of diagnosis for SESCC were 77.8%, 57.1%, 69.7% and 51.9%, 80.0%, 62.9% for the simplified dyad criteria and Inoue's tetrad criteria, respectively.CONCLUSION The combination of proliferation and VS may serve as simplified criteria for the diagnosis of SESCC using NBIME.展开更多
A simple testing method for secondary or induced stress of surrounding rockwas presented by laboratory experiment, numerical simulation and in situ testing based onthe basic principle of the historical stress restorin...A simple testing method for secondary or induced stress of surrounding rockwas presented by laboratory experiment, numerical simulation and in situ testing based onthe basic principle of the historical stress restoring method.First, stress equivalent coefficient,which key coefficient of stress restored testing, was obtained by laboratory experiment.Second, experimental results were examined using 3D finite element numericalanalysis and the influence factors were analyzed by 2D finite element numerical analysis.The correctness of induced stress measuring results in situ for highway tunnel wereproved by elastic mechanics theory solution and single-hole stress rescission method.Thenew simple method of induced stress measuring has important practical value for undergroundengineering induced stress field analysis.展开更多
The Magnetic Barkhausen Noise (MBN) technology is a non-destructive method to measure the neutral temperature of thc CWR track. A series of in-field verifications and data comparison on Australian mainline tracks ha...The Magnetic Barkhausen Noise (MBN) technology is a non-destructive method to measure the neutral temperature of thc CWR track. A series of in-field verifications and data comparison on Australian mainline tracks have shown the results from that system are highly accurate and reliable. The system can be an accuracy and cost-effective tool to prevent the potential buckling and break of CWR rails. The physical backgrounds and features of the system are represented in this paper. The Darwin-Alice Springs Line is a newly constructed main line in Australia which is linked from the north and middle of Australia. Originally, this rail line is designed and constructed in a "cost-effective" way to a lower price, and the key parameters are relatively low. To maintain the stability of the CWR tracks in a very harsh environment, some new technologies such as the MBN technology were utilised. From the results of neutral temperature, it is found that the majority of them are very high. Combined with the calculation and finite element analysis, these problems evidenced that it is caused by the low toe load fastening system and high sleeper spacing. After that some suggestions are given to improve the stability of the CWR on the railway line.展开更多
A generalized finite element formulation is proposed for the study of the spin-dependent ballistic transport of electron through the two-dimensional quantum structures with Rashba spin-orbit interactions (SOI). The ...A generalized finite element formulation is proposed for the study of the spin-dependent ballistic transport of electron through the two-dimensional quantum structures with Rashba spin-orbit interactions (SOI). The transmission coefficient, conductance, the total and local polarization are numerically calculated and discussed as the Rashba eoefficient, the geometric sizes, and incident energy are changed in the T-shaped devices. Some interesting features are found in the proper parameter regime. The polarization has an enhancement as the Rashba coefficient becomes stronger. The polarization valley is rigid in the regime of the conductance plateaus since the local interference among the polarized multi-wave modes. The Rashba interactions coupling to geometry in sizes could form the structure-induced Fano-Rashba resonance. In the wider stub, the localized spin lattice of electron could be produced. The conductance plateaus correspond to weak polarizations. Strong polarizations appear when the stub sizes, incident energy, and the Rashba coupling coefficient are matched. The resonances are formed in a wide Fermi energy segment easily.展开更多
To investigate the ballistic resistance and failure pattern of aeroengine casing following the impact of disk fragments, and to determine the optimum case structure, the phenomena of a 1/3rd disk fragment impact on si...To investigate the ballistic resistance and failure pattern of aeroengine casing following the impact of disk fragments, and to determine the optimum case structure, the phenomena of a 1/3rd disk fragment impact on single and double-layered thin plate targets were simulated using nonlinear dynamical analysis software MSC.Dytran. Strain rate effect was introduced in a Johnson-Cook (JC) material model for the disk fragment and the plate. Impact modeling was based on the Arbitrary Lagrange-Eulerian method, and simulated using explicit finite element method (FEM). Simulation results showed that the major failure pattern of the plate is shearing and tensile fracture with large plastic deformation. It was also concluded that the ballistic limit velocity increases with the standoff distance when it is beyond a certain value, and that greater resistance is obtained when the front plate has either a proportionately low or high thickness. The impact resistance of a double-layered plate may exceed that of a single plate if the thicknesses and standoff distance of the two plates are set appropriately.展开更多
Metal-organic frameworks(MOFs), which are composed of metal nodes and organic ligands, possess crystal phase, ordered well-defined porous structure and large surface area. Since first reported in 1990, MOFs have attra...Metal-organic frameworks(MOFs), which are composed of metal nodes and organic ligands, possess crystal phase, ordered well-defined porous structure and large surface area. Since first reported in 1990, MOFs have attracted extensive attention and the fabrication of MOF membranes has expanded their applications and endowed them with a bright future in various fields. The mass transportation process through MOF membranes is vital during their diverse applications. In this review, the strategies of preparing continuous and well-intergrown MOF membranes are presented firstly.The selective transportation processes of gas molecules, liquid molecules and ions through MOF membranes are discussed in detail, respectively. The effects of pore entrance size, interaction, functional groups decorating on the ligands and guest components on mass transportation have been summarized in this review as well. In addition, MOF membranes with selective transportation performance demonstrate potential in separation, catalysis, energy transformation and storage devices,and so on.展开更多
基金Project (U0834002) supported by the Key Program of NSFC-Guangdong Joint Funds of ChinaProject (51005079) supported by the National Natural Science Foundation of China+1 种基金Project (20100172120001) supported by Specialized Research Fund for the Doctoral Program of Higher Education, ChinaProject (10451064101005146) supported by the Natural Science Foundation of Guangdong Province,China
文摘To investigate the workpiece curvature influence on groove deformation,numerical studies with curvature varying from negative to positive were conducted on copper material.Groove deformations were analyzed,including groove geometry,effective stress distribution and plough force.The curled groove shape whose workpiece curvature was 0.133 mm-1 was validated by experiments.Moreover,a series of geometry models with various curvatures were introduced to analyze the change of groove deformation.The results show that positive curvatures influence groove deformation more intensively than negative or zero curvature.It is mainly due to the action of the tool forming face during plough process.
基金The National Natural Science Foundation of China(No.40902076)the Natural Science Foundation of Jiangsu Province(No.BK20141224)
文摘Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using the finite difference method for numerical simulation. The boundary conditions and the initial values are determined by in situ observations and numerical iterations.The simulation results indicate that the ultimate calculated steady heat transfer time is 68 years, and most of the heat transfer is completed in 20 years.The initial constant temperature soil surrounding the tunnels is transformed to an annually variable one.An obvious temperature-varying region of the surrounding soil is discovered within 5 m from the tunnel exterior, as well as within the entire range of soil between the two tunnels.The maximum temperature increase value reaches 7.14 ℃ and the maximum peak-to-valley value of annual temperature increase reaches 10 ℃.The temperature variation of soils surrounding tunnels below 10 m is completely controlled by the heat transfer from the tunnels.The coupled heat transfer effect is confirmed because the ultimate steady temperature of soil between the two tunnels is higher than the ones along other positions.Moreover, the regression model comprising a series of univariate functions is proposed for the annual soil temperature fluctuation estimation for the locations varied distances around the tunnel.This investigation is beneficial to gain an insight into the long-term variation tendencies of local engineering geological conditions of the river beach above shallow sections of the cross-river road tunnels.
文摘In this paper, a 3D finite element (FE) program ADINA was applied to analyzing a tunnel with 9 segment tings. The loads acting on these segment tings included the squeezing action of tail brush of shield machine under attitude deflection, the jacking forces, the grouting pressure and the soil pressure. The analyses focused on the rebar stress in two statuses: (1) normal construction status without shield machine squeezing; (2) squeezing action induced by shield machine under attitude deflection. The analyses indicated that the rebar stress was evidently affected by the construction loads. In different construction status, the rebar stress ranges from -80 MPa to 50 MPa, and the rebar is in elastic status. Even some cracks appear on segments, the stress of segment rebar is still at a low level. It is helpful to incorporate a certain quantity of steel fiber to improve the anti-crack and shock resistance performance.
基金The National Natural Science Foundation of China(No.41572276)the National Key Research and Development Program of China(No.2017YFC0805400).
文摘For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.
基金Project(2007CB613700)supported by National Basic Research Program of ChinaProject(2006BAE04B03)supported by Item of Support Plan during the 11th National Five-Year PlanProjects(CST,2007bb4413)supported by National Science Foundation of Chongqing,China
文摘Three-dimensional(3D) geometric models with different comer angles (90° and 120°) and with or without inner round fillets in the bottom die were designed. Some important process parameters were regarded as the calculation conditions used in DEFORMTM-3D software, such as stress--strain data of compression test for AZ31 magnesium, temperatures of die and billet, and friction coefficient. Influence of friction coefficient on deformation process was discussed. The results show that reasonable lubrication condition is important to plastic deformation. The change characteristics for distributions of effective stress and strain during an equal channel angular extrusion (ECAE) process with inner angle of 90° and without fillets at outer comer were described. Inhomogeneity index (C) was defined and deformation heterogeneity of ECAE was analyzed from the simulation and experiment results. The deformation homogeneity caused by fillets at outer comer increased compared with the die without fillets. The cumulated maximum strains decrease with increasing the fillets of outer comer in ECAE die and the inner comer angle. The analysis results show that better structures of ECAE die including appropriate outer comer fillet and the inner comer angle of 90° for the die can improve the strain and ensure plastic deformation homogenization to a certain extent. The required extrusion force drops with increasing the fillet made at outer comer in ECAE die. It is demonstrated that the prediction results are in good agreement with experiments and the theoretical calculation and the research conclusions in literatures.
基金Project supported by the National Natural Science Foundation of China (No. 50675077)the Research Fund for the Doctoral Program of Higher Education of China (No. 20050487047)
文摘The dynamic response of moored crane-ship is studied. Governing equations for the dynamic response of a crane-ship coupled with the pendulum motion of the payload are derived based on Lagrange’s equations. The boom is modeled based on finite element method, while the payload is modeled as a planar pendulum of point mass. The dynamic response was studied using numerical method. The calculation results show that the large-amplitude responses occur at wave periods near the natural period of the payload. Load swing angle is smaller for crane-ship with flexible boom, in comparison with rigid boom. The ship surge mo- tions have large vibrations for crane-ship with flexible boom, which were not observed for a rigid boom. The analysis identifies the significance of key parameters and reveals how the system design can be adjusted to avoid critical conditions.
基金Projects(41807265,41972286,42072309)supported by the National Natural Science Foundation of ChinaProjects(HKLBEF202001,HKLBEF202002)supported by the Hubei Key Laboratory of Blasting Engineering Foundation,China。
文摘When the tunnel underpasses through the building,it will cause deformation and even damage to the buildings above,and the deformation of building foundation is the key to building safety.Based on the engineering case,the theoretical analysis was employed to evaluate the influence of shield tunnel underpass construction on the stability of the building,and the optimal tunneling parameters in the field construction have been obtained through the verified theoretical model and parameter analysis.First,the strip foundation of the building was simplified to the Timoshenko beam,which was taken into account the shear effect,and then the deformation displacement of the soil at the same place of strip foundation was applied to the simplified Timoshenko beam.Finally,the numerical solution of the displacement of the strip foundation was obtained by using the finite element method and verified its reliability using Euler-Bernoulli beam theoretical model,field monitoring data,and numerical simulation.Parameters analysis for the deformation and internal force of strip foundation under different types of shield machine tunneling parameters showed that the influence of the pressure of shield excavation chamber,thrust of shield,and driving speed played an important role in the deformation of the building’s strip foundation and internal force.
基金The National Natural Science Foundation of China(No.71671035,72001039)the Open Fund of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment(No.201901)the Open Fund of Jiangsu Wind Power Engineering Technology Center(No.ZK19-03-03)。
文摘An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state functions(LSFs)were established with the structural reliability theory.A power-law function was applied to model the growth of corrosion defects,and the effect of external environmental factors on the growth of the pipeline s defect was considered.Moreover,the result was compared with the commonly used linear growth model.After that,a finite element simulation model was established to calculate the burst pressure of the pipeline with corrosion defects,and its accuracy was verified through hydraulic burst test and by comparison with international criteria.On that basis,the probability that the pipeline may fail was calculated with Monte Carlo simulation(MCS)and by considering the LSFs,and the pipeline s RUL was obtained accordingly.Furthermore,sensitivity analysis was conducted to determine the sensitivity parameters for the corrosion and RUL of the pipeline.The results indicate that the radial corrosion rate,wall thickness and working pressure have a great influence on the failure probability of the pipeline.Thus,corresponding measures should be adopted during the operation process of the pipeline to reduce the corrosion rate and increase the wall thickness,so as to prolong the pipeline s RUL.
基金Project(51978045) supported by the National Natural Science Foundation of ChinaProject([2017]7) supported by Shenshuo Science and Technology Development Project,China。
文摘In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was developed.Two typical fouling particles,the hard particles(sand)and soft ones(coal fines),are considered.A support stiffness test of the ballast bed under various fouling conditions was conducted to calibrate the microscopic parameters of the contact model.With the model,the influence of fouling particles on the mechanical behavior and deformation of the ballast bed was analyzed from macro and micro perspectives.The results show that the increase in the strength of the fouling particles enlarges the stiffness of the ballast bed.Hard particles increase the uniformity coefficient of the contact force bondγof ballast by 50.4%.Fouling particles increase the average stress in the subgrade,soft particles by 2 kPa and hard particles by 1 kPa.Hard particles can reduce the elasticity,plastic deformation and energy dissipation in the track structure.As the fouling particle changes from hard to soft,the proportion of the settlement in ballast bed increases to 40.5%and surface layer of swbgrade settlement decreases to 59.5%.Thus,the influence of fouling particles should be considered carefully in railway design and maintenance.
文摘AIM To simplify the diagnostic criteria for superficial esophageal squamous cell carcinoma(SESCC) on Narrow Band Imaging combined with magnifying endoscopy(NBI-ME).METHODS This study was based on the post-hoc analysis of a randomized controlled trial. We performed NBI-ME for 147 patients with present or a history of squamous cell carcinoma in the head and neck, or esophagus between January 2009 and June 2011. Two expert endoscopistsdetected 89 lesions that were suspicious for SESCC lesions, which had been prospectively evaluated for the following 6 NBI-ME findings in real time: "intervascular background coloration"; "proliferation of intrapapillary capillary loops(IPCL)"; and "dilation", "tortuosity", "change in caliber", and "various shapes(VS)" of IPCLs(i.e., Inoue's tetrad criteria). The histologic examination of specimens was defined as the gold standard for diagnosis. A stepwise logistic regression analysis was used to identify candidates for the simplified criteria from among the 6 NBI-ME findings for diagnosing SESCCs. We evaluated diagnostic performance of the simplified criteria compared with that of Inoue's criteria.RESULTS Fifty-four lesions(65%) were histologically diagnosed as SESCCs and the others as low-grade intraepithelial neoplasia or inflammation. In the univariate analysis, proliferation, tortuosity, change in caliber, and VS were significantly associated with SESCC(P < 0.01). The combination of VS and proliferation was statistically extracted from the 6 NBI-ME findings by using the stepwise logistic regression model. We defined the combination of VS and proliferation as simplified dyad criteria for SESCC. The areas under the curve of the simplified dyad criteria and Inoue's tetrad criteria were 0.70 and 0.73, respectively. No significant difference was shown between them. The sensitivity, specificity, and accuracy of diagnosis for SESCC were 77.8%, 57.1%, 69.7% and 51.9%, 80.0%, 62.9% for the simplified dyad criteria and Inoue's tetrad criteria, respectively.CONCLUSION The combination of proliferation and VS may serve as simplified criteria for the diagnosis of SESCC using NBIME.
基金Supported by the National Natural Science Foundation Special Originality Innovation Research Colony of China(50621403)
文摘A simple testing method for secondary or induced stress of surrounding rockwas presented by laboratory experiment, numerical simulation and in situ testing based onthe basic principle of the historical stress restoring method.First, stress equivalent coefficient,which key coefficient of stress restored testing, was obtained by laboratory experiment.Second, experimental results were examined using 3D finite element numericalanalysis and the influence factors were analyzed by 2D finite element numerical analysis.The correctness of induced stress measuring results in situ for highway tunnel wereproved by elastic mechanics theory solution and single-hole stress rescission method.Thenew simple method of induced stress measuring has important practical value for undergroundengineering induced stress field analysis.
文摘The Magnetic Barkhausen Noise (MBN) technology is a non-destructive method to measure the neutral temperature of thc CWR track. A series of in-field verifications and data comparison on Australian mainline tracks have shown the results from that system are highly accurate and reliable. The system can be an accuracy and cost-effective tool to prevent the potential buckling and break of CWR rails. The physical backgrounds and features of the system are represented in this paper. The Darwin-Alice Springs Line is a newly constructed main line in Australia which is linked from the north and middle of Australia. Originally, this rail line is designed and constructed in a "cost-effective" way to a lower price, and the key parameters are relatively low. To maintain the stability of the CWR tracks in a very harsh environment, some new technologies such as the MBN technology were utilised. From the results of neutral temperature, it is found that the majority of them are very high. Combined with the calculation and finite element analysis, these problems evidenced that it is caused by the low toe load fastening system and high sleeper spacing. After that some suggestions are given to improve the stability of the CWR on the railway line.
基金Supported by the National Science Foundation of China under Grant No.2006CB921605
文摘A generalized finite element formulation is proposed for the study of the spin-dependent ballistic transport of electron through the two-dimensional quantum structures with Rashba spin-orbit interactions (SOI). The transmission coefficient, conductance, the total and local polarization are numerically calculated and discussed as the Rashba eoefficient, the geometric sizes, and incident energy are changed in the T-shaped devices. Some interesting features are found in the proper parameter regime. The polarization has an enhancement as the Rashba coefficient becomes stronger. The polarization valley is rigid in the regime of the conductance plateaus since the local interference among the polarized multi-wave modes. The Rashba interactions coupling to geometry in sizes could form the structure-induced Fano-Rashba resonance. In the wider stub, the localized spin lattice of electron could be produced. The conductance plateaus correspond to weak polarizations. Strong polarizations appear when the stub sizes, incident energy, and the Rashba coupling coefficient are matched. The resonances are formed in a wide Fermi energy segment easily.
基金Project (No. 1104-03) supported by the Aviation Propulsion Technology Development Program, China
文摘To investigate the ballistic resistance and failure pattern of aeroengine casing following the impact of disk fragments, and to determine the optimum case structure, the phenomena of a 1/3rd disk fragment impact on single and double-layered thin plate targets were simulated using nonlinear dynamical analysis software MSC.Dytran. Strain rate effect was introduced in a Johnson-Cook (JC) material model for the disk fragment and the plate. Impact modeling was based on the Arbitrary Lagrange-Eulerian method, and simulated using explicit finite element method (FEM). Simulation results showed that the major failure pattern of the plate is shearing and tensile fracture with large plastic deformation. It was also concluded that the ballistic limit velocity increases with the standoff distance when it is beyond a certain value, and that greater resistance is obtained when the front plate has either a proportionately low or high thickness. The impact resistance of a double-layered plate may exceed that of a single plate if the thicknesses and standoff distance of the two plates are set appropriately.
基金supported by Key Program of National Natural Science Foundation of China (51632008)Zhejiang Provincial Natural Science Foundation (LD18E020001)the National Natural Science Foundation of China (21671171)
文摘Metal-organic frameworks(MOFs), which are composed of metal nodes and organic ligands, possess crystal phase, ordered well-defined porous structure and large surface area. Since first reported in 1990, MOFs have attracted extensive attention and the fabrication of MOF membranes has expanded their applications and endowed them with a bright future in various fields. The mass transportation process through MOF membranes is vital during their diverse applications. In this review, the strategies of preparing continuous and well-intergrown MOF membranes are presented firstly.The selective transportation processes of gas molecules, liquid molecules and ions through MOF membranes are discussed in detail, respectively. The effects of pore entrance size, interaction, functional groups decorating on the ligands and guest components on mass transportation have been summarized in this review as well. In addition, MOF membranes with selective transportation performance demonstrate potential in separation, catalysis, energy transformation and storage devices,and so on.