[Objective] The objective of this project was to evaluate and compare spa- tial estimation accuracy by ordinary kriging and regression kriging with MODIS data, predicting SOM contents using limited available data in S...[Objective] The objective of this project was to evaluate and compare spa- tial estimation accuracy by ordinary kriging and regression kriging with MODIS data, predicting SOM contents using limited available data in Shimen County, Hunan Province, China. [Method] Terrain parameters (derived from DEM) and Normalized differential vegetation index (NDVI), Land surface temperature (LST) (derived from MODIS data) were used as auxiliary data to predict the SOM spatial distribution. The mean error (ME) and mean square error (RMSE) were adopted to validate the SOM prediction accuracy. The descriptive statistics and data transformation were conducted by using computer technology. [Result] Regression kriging with terrain and remotely sensed data was superior to ordinary kriging in the case of limited available samples; even the linear relationship between environmental variables and SOM content was moderate. The accuracy assessment showed that the regression kriging method combining with environmental factors obtained a lower mean predication error and root mean square prediction error. The relative improvement was 6.03% compared with ordinary kriging. [Conclusion] Remotely sensed data such as MODIS im- age have the potential as useful auxiliary variables for improving the precision and reliability of SOM prediction in the hilly regions.展开更多
With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat tr...With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat transfer caused by finite temperature differences, the heat leak between external heat reservoirs and the internal dissipation of working fluids. EGM is taken as an objective function for the optimization. The objective function and design parameters are obtained. Optimal performance curves are presented by thermal and electronic parameters. Effects of these parameters on general and optimal performances are investigated. Results are helpful in determining optimal design conditions in real thermoelectric refrigeration systems.展开更多
According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfe...According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfect inspections, thresholds and repeated intervals are concerned in delay-time models. Since the suggestion by the existing delay-time models that the inspections are implemented in an infinite time span lacks practical value, a de- lay-time model with imperfect inspection within a finite time span is proposed. In the model, the nonhomogenous Poisson process is adopted to obtain the renewal probabilities between two different successive inspections on de- fects or failures. An algorithm is applied based on the Nelder-Mead downhill simplex method to solve the model. Finally, a numerical example proves the validity and effectiveness of the model.展开更多
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex...A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.展开更多
基金Supported by National Natural Science Foundation of China(41071204)Hunan Provincial Innovation Foundation for Postgraduate(CX2011B310)~~
文摘[Objective] The objective of this project was to evaluate and compare spa- tial estimation accuracy by ordinary kriging and regression kriging with MODIS data, predicting SOM contents using limited available data in Shimen County, Hunan Province, China. [Method] Terrain parameters (derived from DEM) and Normalized differential vegetation index (NDVI), Land surface temperature (LST) (derived from MODIS data) were used as auxiliary data to predict the SOM spatial distribution. The mean error (ME) and mean square error (RMSE) were adopted to validate the SOM prediction accuracy. The descriptive statistics and data transformation were conducted by using computer technology. [Result] Regression kriging with terrain and remotely sensed data was superior to ordinary kriging in the case of limited available samples; even the linear relationship between environmental variables and SOM content was moderate. The accuracy assessment showed that the regression kriging method combining with environmental factors obtained a lower mean predication error and root mean square prediction error. The relative improvement was 6.03% compared with ordinary kriging. [Conclusion] Remotely sensed data such as MODIS im- age have the potential as useful auxiliary variables for improving the precision and reliability of SOM prediction in the hilly regions.
文摘With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat transfer caused by finite temperature differences, the heat leak between external heat reservoirs and the internal dissipation of working fluids. EGM is taken as an objective function for the optimization. The objective function and design parameters are obtained. Optimal performance curves are presented by thermal and electronic parameters. Effects of these parameters on general and optimal performances are investigated. Results are helpful in determining optimal design conditions in real thermoelectric refrigeration systems.
基金Supported by the National Natural Science Foundation of China(61079013)the Natural Science Fund Project in Jiangsu Province(BK2011737)~~
文摘According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfect inspections, thresholds and repeated intervals are concerned in delay-time models. Since the suggestion by the existing delay-time models that the inspections are implemented in an infinite time span lacks practical value, a de- lay-time model with imperfect inspection within a finite time span is proposed. In the model, the nonhomogenous Poisson process is adopted to obtain the renewal probabilities between two different successive inspections on de- fects or failures. An algorithm is applied based on the Nelder-Mead downhill simplex method to solve the model. Finally, a numerical example proves the validity and effectiveness of the model.
文摘A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.