In this work we present a new method to solve the Perona Malik equation for the image denoising. The method is based on a modified fixed point algorithm which is fast and stable. We discretize the equation using a fin...In this work we present a new method to solve the Perona Malik equation for the image denoising. The method is based on a modified fixed point algorithm which is fast and stable. We discretize the equation using a finite volume method by integrating the equation using a fuzzy measure on the control volume. To make our algorithm move faster in time, we have used an optimized domain decomposition which generalize the wave relaxation method. Several test of noised images illustrate this approach and show the efficiency of the proposed new method.展开更多
In this paper, a family of sub-cell finite volume schemes for solving the hyperbolic conservation laws is proposed and analyzed in one-dimensional cases. The basic idea of this method is to subdivide a control volume(...In this paper, a family of sub-cell finite volume schemes for solving the hyperbolic conservation laws is proposed and analyzed in one-dimensional cases. The basic idea of this method is to subdivide a control volume(main cell) into several sub-cells and the finite volume discretization is applied to each of the sub-cells. The averaged values on the sub-cells of current and face neighboring main cells are used to reconstruct the polynomial distributions of the dependent variables. This method can achieve arbitrarily high order of accuracy using a compact stencil. It is similar to the spectral volume method incorporating with PNPM technique but with fundamental differences. An elaborate utilization of these differences overcomes some shortcomings of the spectral volume method and results in a family of accurate and robust schemes for solving the hyperbolic conservation laws. In this paper, the basic formulation of the proposed method is presented. The Fourier analysis is performed to study the properties of the one-dimensional schemes. A WENO limiter based on the secondary reconstruction is constructed.展开更多
The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction.It is deduced from a priori estimates that the approximate solution converges to the weak solution of t...The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction.It is deduced from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies estimates which do not depend on the kinetic rate.It follows that the solution converges to the solution of a nonlinear diffusion problem,as the size of the volume elements and the time steps converge to zero while the kinetic rate tends to infinity.展开更多
文摘In this work we present a new method to solve the Perona Malik equation for the image denoising. The method is based on a modified fixed point algorithm which is fast and stable. We discretize the equation using a finite volume method by integrating the equation using a fuzzy measure on the control volume. To make our algorithm move faster in time, we have used an optimized domain decomposition which generalize the wave relaxation method. Several test of noised images illustrate this approach and show the efficiency of the proposed new method.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1430235,and 11672160)
文摘In this paper, a family of sub-cell finite volume schemes for solving the hyperbolic conservation laws is proposed and analyzed in one-dimensional cases. The basic idea of this method is to subdivide a control volume(main cell) into several sub-cells and the finite volume discretization is applied to each of the sub-cells. The averaged values on the sub-cells of current and face neighboring main cells are used to reconstruct the polynomial distributions of the dependent variables. This method can achieve arbitrarily high order of accuracy using a compact stencil. It is similar to the spectral volume method incorporating with PNPM technique but with fundamental differences. An elaborate utilization of these differences overcomes some shortcomings of the spectral volume method and results in a family of accurate and robust schemes for solving the hyperbolic conservation laws. In this paper, the basic formulation of the proposed method is presented. The Fourier analysis is performed to study the properties of the one-dimensional schemes. A WENO limiter based on the secondary reconstruction is constructed.
基金supported by a Marie Curie Transfer of Knowledge Fellowship of the European Community’s Sixth Framework Programme(No. MTKD-CT-2004-013389)
文摘The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction.It is deduced from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies estimates which do not depend on the kinetic rate.It follows that the solution converges to the solution of a nonlinear diffusion problem,as the size of the volume elements and the time steps converge to zero while the kinetic rate tends to infinity.