期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
二维不规则域内紊流有限体积解 被引量:1
1
作者 党英一 费祥麟 《西安交通大学学报》 EI CAS CSCD 北大核心 1989年第3期109-118,共10页
本文针对M.Faghri等计算某一类二维不规则域内层流方法在工程中应用范围窄的特点,结合本文推出的物面正交曲线座标系中的控制方程,用代数变换法发展了一个二维不规则域内紊流的计算方法。它既达到了适用范围广,同时又避免了数值求解偏... 本文针对M.Faghri等计算某一类二维不规则域内层流方法在工程中应用范围窄的特点,结合本文推出的物面正交曲线座标系中的控制方程,用代数变换法发展了一个二维不规则域内紊流的计算方法。它既达到了适用范围广,同时又避免了数值求解偏微分方程生成适体坐标的目的。采用紊流K-ε两方程模型并用有限体积法进行方程离散化。文中最后通过若干算例对该方法进行说明。计算与实验结果比较表明,二者吻合较好。 展开更多
关键词 湍流 紊流 有限体积解 座标变换
下载PDF
二维带非线性源项单个守恒律的有限体积方法的收敛性
2
作者 李大明 《数学年刊(A辑)》 CSCD 北大核心 2003年第3期299-314,共16页
本文讨论在无结构网格下用有限体积方法离散二维带非线性源项的单个守恒律,在测度值解与Diperna唯一性结果的框架下,证明了估计解在L_(loc)~l(R^2×(0,T))意义下收敛到单个守恒律的熵解。
关键词 守恒律 有限体积格式 测度值
下载PDF
A Modified Fixed Point Method for the Perona Malik Equation
3
作者 M.R.Amattouch H. Belhadj, N. Nabila 《Journal of Mathematics and System Science》 2017年第7期175-185,共11页
In this work we present a new method to solve the Perona Malik equation for the image denoising. The method is based on a modified fixed point algorithm which is fast and stable. We discretize the equation using a fin... In this work we present a new method to solve the Perona Malik equation for the image denoising. The method is based on a modified fixed point algorithm which is fast and stable. We discretize the equation using a finite volume method by integrating the equation using a fuzzy measure on the control volume. To make our algorithm move faster in time, we have used an optimized domain decomposition which generalize the wave relaxation method. Several test of noised images illustrate this approach and show the efficiency of the proposed new method. 展开更多
关键词 Perona Malik equation Fixed point method Fuzzy measure Choquet integral.
下载PDF
High order sub-cell finite volume schemes for solving hyperbolic conservation laws I: basic formulation and one-dimensional analysis 被引量:1
4
作者 JianHua Pan YuXin Ren 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第8期60-75,共16页
In this paper, a family of sub-cell finite volume schemes for solving the hyperbolic conservation laws is proposed and analyzed in one-dimensional cases. The basic idea of this method is to subdivide a control volume(... In this paper, a family of sub-cell finite volume schemes for solving the hyperbolic conservation laws is proposed and analyzed in one-dimensional cases. The basic idea of this method is to subdivide a control volume(main cell) into several sub-cells and the finite volume discretization is applied to each of the sub-cells. The averaged values on the sub-cells of current and face neighboring main cells are used to reconstruct the polynomial distributions of the dependent variables. This method can achieve arbitrarily high order of accuracy using a compact stencil. It is similar to the spectral volume method incorporating with PNPM technique but with fundamental differences. An elaborate utilization of these differences overcomes some shortcomings of the spectral volume method and results in a family of accurate and robust schemes for solving the hyperbolic conservation laws. In this paper, the basic formulation of the proposed method is presented. The Fourier analysis is performed to study the properties of the one-dimensional schemes. A WENO limiter based on the secondary reconstruction is constructed. 展开更多
关键词 compact high order method sub-cell finite volume method unstructured grid
原文传递
Numerical Approximation of a Reaction-Diffusion System with Fast Reversible Reaction
5
作者 Robert EYMARD Danielle HILHORST +1 位作者 Hideki MURAKAWA Michal OLECH 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第5期631-654,共24页
The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction.It is deduced from a priori estimates that the approximate solution converges to the weak solution of t... The authors consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction.It is deduced from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies estimates which do not depend on the kinetic rate.It follows that the solution converges to the solution of a nonlinear diffusion problem,as the size of the volume elements and the time steps converge to zero while the kinetic rate tends to infinity. 展开更多
关键词 Instantaneous reaction limit Mass-action kinetics Finite volume methods Convergence of approximate solutions Discrete a priori estimates Kolmogorov's theorem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部